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Abstract

Behavioral specifications are often employed for modeling complex systems at high
levels of abstraction. Failure conditions of such systems can naturally be speci-
fied as assertions defined over system variables. In that way, such behavioral
descriptions can be transformed into imperative programs with annotated failure
assertions. In this thesis, we present a scalable source code based framework for
computing failure probability of such programs under the fail-stop model by apply-
ing formal methods. We further discuss the design and implementation of ProPFA
(Probabilistic Path-based Failure Analyzer), an automated tool developed for this
purpose.

Reliability is one of the most important quality attributes of component based
complex embedded systems. It is often the case that such systems are required
to ensure a minimal guarantee of correct execution. The overall reliability of such
systems is determined by the reliability of different possible execution paths and
their probabilities. While computation of such exact reliability figures may be
expensive and even infeasible in many cases, a minimal reliability guarantee may
often be established by inspecting a small number of highly probable execution
paths of the system. Based on the above insight, we leverage our failure estima-
tion framework for reliability analysis of high-level behavioral descriptions. We
also present an efficient algorithm that performs the reliability analysis of such
component based systems with sequential execution semantics.

Our failure analysis framework can be seamlessly employed in the domain of
control softwares. We have addressed two different class of problems one being the
formal analysis of control theoretic properties like exponential stability criterion.
Other class of problems deals with failure analysis of safety critical properties in
embedded system softwares. In both cases, exact implementation of the system in

C-syntax is statically analyzed leveraging the proposed failure analysis framework.
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Chapter 1
Introduction

Software is the most crucial component of a wide range of systems ranging from
large scale business applications to safety critical control systems for airlines, rail-
ways and telecommunications. Some software bugs may cause only trivial prob-
lems, but errors in safety critical applications like flight control softwares and
medical cyber-physical systems can have unacceptable consequences as noticed in
the past. The Therac-25 medical radiation therapy is one of the deadly instances of
software failures in the years 1985-87. As a side effect of a buggy software powering
the radiation therapy device, 100 times the intended dose of radiation were admin-
istered to patients resulting in death of at least three patients [LT93]. In the year
1991, a Patriot missile defense system operating at Dhahran, Saudi Arabia, during
Operation Desert Storm failed to track an incoming Scud because of a software
problem in the system’s weapons control computer. This Scud subsequently hit an
Army barrack, killing 28 Americans [Def92]. Another software-induced flight crash
happened in Stockholm in 1993. According to the final report of the crash, the
control laws were complex which refrained the full analysis of their functions. The
effects of control surface movement speed limitations had not been fully investi-
gated for the full flight envelope [Ste03]. Recently, in March 2016, Japan’s Hitomi
astronomical satellite was destroyed when a thruster fired in the wrong direction,
causing the spacecraft to spin faster instead of trying to stabilize. Software bugs
are expensive, too. A 2002 study commissioned by the National Institute of Stan-
dards and Technology found that software bugs cost the US economy $59.5 billion

every year [Tas02]. We can not even imagine the global costs.



1. Introduction

The root cause of these failures is the complex construction of software systems
managing these applications. Though the overall design complexity is generally
distributed among relatively simpler subsystems with pre-specified functionalities,
the precise description of the integration logic and the appropriate functional be-
havior of the integrated system in a specific environment are hard to establish.
Formal methods provide a foundation for describing complex systems and reason
about behaviors of such systems from a mathematical model. This is a com-
plementary approach to traditional testing-based software development method-
ologies. Software testing is expensive, and provides only partial coverage of the
range of behaviors that a piece of software may exhibit based on only the state
sequences actually examined. There is little reason to assume the behavior of
untested sequences will be similar to tested ones, and therefore little justification
for extrapolating from tested cases to untested ones. On the other hand, the ad-
vantages claimed for formal method here is that it is a method which reasons about
the entire statespace!.

Any computer software implicitly specifies the behavior that is exhibited while
running on a particular computing system in the expected operating conditions.
A behavioral specification typically has two models: an interface model that spec-
ifies the external behavior of the component, and a design model which describes
the concrete behavior. Such ‘program-defined” behavioral specifications are often
employed for modeling a complex software system at a high level of abstraction. It
provides formal code level abstraction that allows the programmers to express the
intended behavior of the program modules in terms of failure assertions defined
over system variables. If the assertions are not satisfied, the program execution
stops which prevents the system to progress to unsafe states as defined by some
requirement specification. As an example, in case of fly-by-wire control system
in airplanes, the ‘Mach Number’ (Ratio of aircraft speed by velocity of sound)
should remain in the range [0.0 - 0.84]. This necessary requirement is expressed
as a failure assertion inside the behavioral specification presented in terms of an
imperative program. If this assertion is not satisfied, the system enters into an
unsafe state where the wings and tail of the subsonic aircraft gets permanently

damaged due to generated shock waves leading to plane crash. Again, even if this

'With its own issues pertaining to scalability



assertion executes successfully, there might be a small probability that the wings
and tail can be damaged due to some irregular environmental situation. This can
be estimated while testing the aircraft. The work reported in this thesis attempts
to establish a formal framework for computing the probability of system level
failure by analyzing such behavioral abstraction in terms of imperative programs
embedded with failure assertions under the assumption of fail-stop failure model.

It also leverages the testing data available for the system for precise estimation.

We present Probabilistic Path-based Failure Analyzer (ProPFA), a path based
tool that leverages program analysis techniques to compute the failure proba-
bility of such imperative programs embedded with failure assertions. Given the
input environment, it also takes into account the failure probabilities of subsequent
components even if the assertions are executed successfully. ProPFA extracts one
program execution path at a time and computes the probability with which all as-
sertions inside the path executes perfectly. Finally all these probabilities are enu-
merated to provide a scalable failure probability estimate of the whole program.
In presence of loops, an optimization is also proposed to handle the exponential
blowup in the number of paths using Invariant Relations. As is evident, it may
not be feasible to consider all program paths. In that case, a quantitative measure
for the imprecision in the estimation process due to loss of coverage is captured as
a confidence measure. Further, the implementation of ProPFA using well known,

robust formal APIs makes the framework usable and extensible.

The framework can be seamlessly employed in the domain of reliability estima-
tion and validation of complex component based software systems. Given the set
of probability density functions for input variables as an operational environment,
the reliability of a software system at a particular time instant (Point Reliability)
can be estimated directly from the failure probability of the whole system. Risk
analysis of control softwares with bounded environmental uncertainty is one of the
major applications of this framework. As discussed before, the failure conditions
in the safety critical control softwares are presented in the behavioral specification
as failure assertions. Due to sensor or actuation errors, the system may not attain
the stability. We aim to investigate how a control system will actually behave in

the face of bounded environmental uncertainty:.
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1.1 Motivation and Workflow

Any failure run of software systems, even if handled, lead to degradation in Quality
of Service (QoS) where the definition of such QoS measures is dependent on the
area of application [Che80]. For example, in case of Cyber Physical Systems
with an underlying networked control infrastructure, environmental noise during
transmission or sensor reading leads to unsafe plant state information which needs
to be ignored so that an uncalled for control actuation is not passed on to the plant.
In that way, the safety of the system is gracefully maintained with an associated
degradation in Quality of Control (QoC) [GMGB*14].

Computing the probability of system level failure provides a direct handle for
estimating relevant QoS metrics for the system. Analytical methods for computing
such failure probabilities using high level models and parameters are widely estab-
lished. These approaches focus on reliability models or are based on high level

system architecture [Gok07, HH11]. However, it has the following shortcomings.

« High level models do not capture complex execution semantics of systems as

can be specified in the form of a program behavior.

» In case the system under question is a software program itself, model driven
analytical techniques refrain from deriving probability bounds from the source
code directly. This implies an added dependence on correctness of model

construction given a source implementation.

In case of software systems, existing tools either use failure data obtained during
phases of software life cycles to drive one/more of the software reliability growth
models [KKLM93, LNF93] or use test coverage measurements [Den97, RGT00] to
estimate reliability. Established techniques like probabilistic risk assessment lack
the notion of provability as given by formal techniques which provide sophisti-
cated reasoning mechanisms for working with high level system models as well
as behavioral specifications given as imperative programs. We intend to provide
an end-to-end framework answering the pertinent question of failure probability
estimation. The highlighted block in Figure 1.1 presents the input and output of
the framework.

Reliability is one of the most important quality attributes of such software
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Figure 1.1: The Proposed Framework and its Application in Reliability Analysis

systems designed by integrating heterogeneous components with well defined in-
terfaces. The overall reliability of such systems can be determined by computing
the reliability of different possible program execution paths. As illustrated in
Figure 1.1, the proposed framework can be seamlessly employed for estimating
reliability of software systems. The glue logic of the component based software
can be abstracted as an imperative system with reliability assertions defining the
component interface specifications. These assertions, if satisfied, invoke the subse-
quent components. Otherwise the system stops execution under the assumption of
fail-stop failure model. Component level testing data is also available which define
the probability that even after satisfying the reliability assertions, the subsequent
component fails resulting failure of the overall system. In practice, computation of
such exact reliability figures may be expensive and even intractable. Hence, instead
of full system reliability estimation, it makes sense to provide a minimal reliability
guarantee by inspecting a finite set of highly probable execution paths. Based on
the above insight, the proposed failure analysis framework is employed for soft-
ware reliability estimation and validation of high-level behavioral descriptions of
software systems involving component interface specification contracts expressed

in terms of failure assertions.

This framework can also be employed for assuring strict performance guaran-
tees like exponential stability criterion for switched control system implementa-
tions. While such guarantees are verifiable by a control engineer at the time of
design, when such a system is actually deployed, it may fail to meet control perfor-
mance requirements due to environmental transient noises in sensing. Erroneous

sensor readings get injected to the system primarily due to the following kinds
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of uncertainties - a) transient faults affecting the sensor readings, b) uncertainty
related with external disturbances like environmental noise fluctuations beyond a
threshold up to which the control law is robust. In such scenarios, computing the
control action over corrupted sensor inputs and accordingly actuating the plant
may actually push the system further away from its set point. Hence, it makes
sense to analyze the risk involved in control software with bounded environmental
uncertainty considering the exact implementation of control software as a C-like
program.

Challenges in Formal Analysis : Though formal analysis provides a foun-
dation for describing complex systems and reason about behaviors from a math-
ematical model, it faces several challenges, one of them being correct abstraction
of the whole program in presence of loops. A loop in a program corresponds to
several program execution paths, which makes the analysis harder due to exponen-
tial increase in the number of paths to be considered. A recent approach towards
formal software reliability [FPV13] built on the tool Symbolic Path Finder (SPF)
has similar issue. It provides a formal technique for reliability estimation of im-
perative programs by generating path conditions. In presence of loops, it sets a
bound for unfolding the loop. If the bound is reached and loop condition does not
fail, SPF backtracks and generates path conditions for which the success status is
unknown. In this thesis, we present an optimized software reliability estimation in
presence of loops by utilizing the concept of invariant relations. Also, a confidence
measure associated with the estimate is provided depending on path coverage. We

summarize the objectives and thesis contributions in the subsequent section.

1.2 Objectives and Contributions

In this thesis we propose a theoretical framework for failure estimation of be-
havioral specification of a software system presented in terms of an imperative
program. This scheme utilizes path based failure estimation approach in order to
compute the system-level failure probability. This framework is then utilized in
the domain of software reliability and risk analysis of control softwares.

To summarize, the major contributions of the thesis are as follows.

o We present a path based framework for estimating failure probability of an
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imperative program in C-like syntax.

o The proposed approach handles loops gracefully using invariant relations
(wherever possible) thus resulting in improved scalability. The imprecision

in the estimation process are captured as a confidence measure.

« An automatic path based tool flow ProPFA (Probabilistic Path-based Failure
Analyzer) integrating state-of-the-art static analysis techniques is developed

for this purpose.

o ProPFA finds application in Point reliability estimation and validation of
component-based system specifications represented in terms of imperative
programs. Additionally, it takes into account the component level testing
statistics with the framework to provide a scalable semi-formal solution to the
pertinent question of reliability. Experimental results are presented over few
case studies from safety-critical avionics and automotive domain exhibiting

the applicability of the approach.

o Application of the proposed framework in risk estimation of a control system

implementation for an uncertain noisy environment is also presented.

1.3 Work done and Thesis Organization

The focus of this thesis is to estimate failure probability of software systems at
early design stages and design an end-to-end framework for the same. We attempt
to deploy the framework in diverse domains to provide scalable solutions to the
problems of reliability estimation and validation of component based software sys-
tems and risk analysis of control software systems. The remaining part of this

section summarizes the work done in the thesis.
Chapter 1: Introduction
This chapter provides a brief introduction followed by motivation, objective, scope

and main contributions of the thesis.

Chapter 2: Failure Estimation of Behavioral Specifications
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In this chapter we have provided an illustration of the proposed theoretical frame-
work for failure probability estimation of behavioral description of a software sys-
tem presented in terms of an imperative program annotated with failure assertions.
The chapter begins with the comprehensive theory followed by the algorithmic
details of the proposed approach. Finally, it provides an overview of ProPFA,
an automatic tool developed for the purpose. Employing current state-of-the-art
static analysis tools ProPFA uses path-based analysis approach to compute the

system level failure probability in a push button manner.

Chapter 3: Towards Reliability Analysis of Component based Software
Systems

The theoretical framework proposed in Chapter 2 can be seamlessly employed in
the domain of reliability. Chapter 3 attempts to establish a provable reliability
guarantee of a component based software systems by analyzing the behavioral
specifications. Based on path coverage, a measure of confidence is also provided
with the estimate. For reliability validation we propose a greedy strategy where
execution paths are explored based on their likelihood. Thus we present a scal-
able approach for reliability estimation and validation by utilizing our theoretical

framework.

Chapter 4: Reliability Analysis of Control Software
Chapter 4 provides a formal approach towards probabilistic formal analysis of
switched case control software implementations and a detailed investigation on

the behavior of a control system in the face of bounded environmental uncertainty.
Chapter 5: Conclusion and Future Work

Finally, chapter 5 provides a summary of the important aspects of the work and

proposes certain future directions.

10
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Chapter 2

Failure Estimation of Behavioral

Specifications

A behavioral specification is often employed for modeling a complex system at
a high level of abstraction. Well known failure conditions of such systems can
be naturally specified as assertions defined over system variables. In that way,
the situation transforms to an imperative program with annotated failure asser-
tions. In this chapter we discuss a framework for computing failure probability of
such programs under the fail-stop failure model. We also discuss the design and

implementation of a tool developed for this purpose in the subsequent sections.

2.1 Overview of the Proposed Framework

In this section we consider imperative programs with C-like syntax. A program
is characterized as a Control Flow Graph (CFG) which is a standard graph based
representation of computation and control flow. The nodes of the CFG represent
program points at which the program states are captured. After executing each
program statement, the state of the program changes. The edges of the CFG are
labeled with program statements. The CFG of the program has one entry and
one exit node depicting the start and end points of the program respectively. For
a program o defined over a set V' of variables, a program state implies a possible

value assignment to the variables. The CFG can be formally defined as follows.

13



2. Failure Estimation of Behavioral Specifications

Definition 1. Control Flow Graph of a Program (G,): The control flow
graph G, =< N, E > of a program o has one node n; € N for each program point at
which the program state is captured. Node Ngiare and nenq depict the start and end node
of the CFG. An edge e; = (nj,nij+1) is labeled with a program statement S; € o. Node

Nend Tepresents the end state of the program. O

Figure 2.1 shows an example of CFG representation of a program, i.e., G,

where node 1 and 6 represent ng,+ and n.,q respectively.

void main(int x, int y)

{
if (x <50){
assert(z +y < 100);
y=y+2;
assert(y < 50);
x:$+1; x>=60
else
r=x—1; x=x-1
if (z < 60)
'x:x—i_l; A ,: asser
assert(x +y < 100); x-y<=10(
Yy=y-+2;
else
r=x—1;
assert(z +y < 100) ;
y=y—2;
}

Figure 2.1: Program specifications annotated with Failure Assertions

We consider programs with Failure Assertions. A program is modularized into
smaller segments and the interactions between them are controlled by placing
failure assertions in the beginning of such program segments. These assertions
define the predicates that need to be true at that program point. Failure assertions
define the region of input state space in which the subsequent program segment

executes successfully.

Definition 2. Failure Assertion: A Fuailure Assertion A placed immediately before

some program point ‘n’ is a predicate defined over a set V of program variables. In an

14
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execution instance of the program, if A evaluates to ‘True’, it implies that the program
has executed successfully till n. If A evaluates to ‘False’, it implies that execution of
subsequent program segments shall lead to undesired program behavior to be interpreted

as a failure of the execution instance. O

The execution semantics of failure assertions is ‘fail stop’, i.e., if at least one of
these assertions fail, the overall program execution fails. As an example, consider
the program presented in Figure 2.1 which is annotated with failure assertions
Ay, As, A3z and A,. These assertions describe the expected preconditions of the
subsequent program segments.

For a program o defined over set V' of variables, let V;, C V be the set of input
variables. Variables in Vj, assume values from input state space of the program.
For example, consider a program P(int z, int y) whose input variables x and y
are defined as integers. In this case,  and y can take values from the range of
integers [-32768, 32767] if the storage size is 2 bytes. Hence, the input space of
the program P is [-32768, 32767]x[-32768, 32767] which defines the operational
profile of P. In general, the input variables (x and y for program P) can be
distributed following some specific distribution within the range. Dynamically, in
any random run of a program o, the set of input variables V' takes values from
its operational profile following independent /joint probability distributions of the
input variables. Depending on these values, the failure assertions are evaluated to
‘True’ or ‘False’. Statically speaking, the assertions may fail from a specific region
of the input operational profile. We assume that an input operational profile, i.e.,
a quantitative characterization of probability mass functions and ranges of input
variables are made available. In this light, our objective is to compute the failure
probability of the program annotated with failure assertions under fail-stop failure
model. In summary, the overall problem statement for the work is provided as
follows.

Problem Statement : We are given an imperative program o in C-type
syntaz annotated with a set of failure assertions A = {Ay,--- | A, }. Any random
execution run of o is considered a ‘failure run’ iff any one of the failure assertions
A; € A actually fail in that run. Given such an instance of o along with an input
level operational profile, we intend to compute the failure probability of o in any

random execution run.

15



2. Failure Estimation of Behavioral Specifications

Let an imperative program o be a 2-tuple (8,.A) where the set of program
statements is represented as (8) and the set of failure assertions is defined as A.
The branching nodes of GG, represent the conditionals present in o. Let J be the set
of conditionals. Generally, in any random run of o, the set V' = {vy,vq,- - v;} of
variables assumes values from the domain of variables { Dy, Dy, - - - , Dy} following
independent /joint probability distributions. In a run of o, a path of G, is fol-
lowed. A program path (7) starts at node ngq,., executes a sequence of program
statements (S € §) and failure assertions (A € A) following the conditionals and

ends at ne,q. Formally, 7 can be defined as follows.

Definition 3. Program FExecution Path: Given a« CFG G, = < N,E > of a
program o, an execution path (m) from the start node ngiare to node nepg is a sequence
of nodes ™ = (Ngpare, M1, ,Nend) depicting the program points and edges labeled with

program statements, conditionals and assertions. O

The likelihood of failure in an execution path depends on both unsuccessful
execution of a failure assertion and the probability of inputs, generated as per
the operational profile, actually driving the program down to that particular path
where the failure assertion is not satisfied at a particular program point. According
to our fail-stop failure model, the program fails if any failure assertion in the path
taken do not execute successfully.

Let an assertion (A;) be a label of an edge (n;,n;41 € E) in G,. The program
point n; characterizes the program state before A; is executed and n;,; denotes
the program state after executing A; successfully. For our purpose, we apply a

transformation function p on G, as defined below.

Definition 4. Transformation p: The transformation p is a mapping from G, —
G!. such that, the set of failure assertions A in o are converted into conditionals in o’.

O

For each assertion A; such that A; is the label of some edge (n;,n;y1), we
introduce a new node f; and an edge e; = (n;, f;) labeled with A;. This process
is continued for all failure assertions A; € A. The derived CFG is defined as
G/ =< N',E' > where N' = NU{f; | JA; € o} and E' = EU{(ns, fi) | A; € o0 and
A; is label of (n;,n;11)}. The conditional set for G’ is defined as, I’ = JJAUJA.
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2.1. Overview of the Proposed Framework

If any of these transformed conditionals is not satisfied, i.e., conditional in A is
satisfied, the program flow enters into one of the newly introduced nodes. We
call them failure nodes. The transformed CFG G/ corresponding to the CFG G,
of Figure 2.1 is presented in Figure 2.2. It may be noted that in G/, the only
terminating node which is not a failure node is n.,q. We call this node as success
node. An execution path () is considered as a success path if it starts at the entry
node of G/ i.e., Ngyqpt, traverses m and finally reaches the success node of G i.e.,
Neng- The set of success paths in a program is defined as II;. All other program
execution paths are considered as failure paths. In Figure 2.2, the execution paths
{1-2—-3-4-5-6},{1-7-8-9-10—11—-12—6} and {1-7—8—13—-14—15—6}

are included in the set Il of the program.

fi < Failure Node

Figure 2.2: The notion of Failure and Success path

We propose a semi formal path based approach for program level failure esti-
mation by employing static analysis techniques [NNH99] on G’ . Considering the
input profile, there is a specific probability that a program path is taken. We
estimate this specific probability associated with each success path. The success
probability of the whole program is then enumerated by adding the probabilities
of the success paths. Finally, the overall failure probability of the program is esti-
mated. Our method computes the failure probability of the program in Figure 2.1

as 0.23034979 assuming that the variables = and y are uniformly distributed over
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2. Failure Estimation of Behavioral Specifications

the integer ranges [0, 100] and [0, 50] respectively.

2.1.1 Failure Probability Estimation of a Program Path

Let us first consider o as a loop-free program. The original set of conditionals J
of o contains only the ‘if-else’ conditionals, while the set J' contains all original
if-else conditionals and the conditionals derived by converting the assertions. For
a given input scenario, a path 7 is considered as a success path i.e., w € II; iff the
control flow reaches the success node (ne,q) of the transformed CFG following 7.
Let the total number of conditionals in m be k. The probability Pr(m) that any
path 7 € G/ is taken in any random run of o can be defined as follows.

Let J/ be a subset of I’ containing all conditional that occur in a path 7. Note
that for the path 7 € Il to execute, all conditionals € J_ need to be evaluated to

true. Let the sequence of conditionals € I’ be {IT, 1], - IT}.

Pr(m) = Pr(ngan :—p> Nend) 1)
= PT(I{F) X PT(]g/[f) X o -PT(I,?/(I{r NN A Lll))

The term Pr(IT) denotes that I is true in 7. The term Pr(IJ/IT) denotes that
I, is true given the fact that [; is already known to be true.

The computation of Equation 2.1 can be done using standard program analysis
methods like Weakest Precondition (WP) analysis [Dij75].

Definition 5. Weakest Precondition Function: If S is a code fragment and A
is an assertion about states, then the weakest precondition of S with respect to A (written
as WP(S,A)) is an assertion that is true for precisely those initial states from which S

must terminate, and executing S must produce a state satisfying A. m

The W P(w, A) basically provides the initial predicates that if satisfied by the
input, will drive the program flow down to the path where assertion A executes
successfully. We describe a program path as a sequence of basic blocks and con-
ditionals. Let m = IS5y - -+ Sy_1 Iy, where I = {I,, I5,--- , I;;}. ' The S;s are

basic blocks comprising sequence of assignment statements of affine expressions.

lignoring superscript 7 in I 7 when it is clear from the context.
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2.1.1. Failure Probability Estimation of a Program Path

In this case we need to compute the path condition [Kin76] of m which is essentially

captured by the following expression.

WP(1,S1135, -+, Sk—1, Iy) = WP(I1511589, -+, Iy—1, WP(Sk_1, I;))
= WP([1 51155, -, Sk—2, Iy_-1 N\WP(Sk_1, Ii))
(2.2)

The above recursive expression is used to compute the predicates characterizing
the input subspace of the program which drives the execution through path 7. We
restrict ourselves to static affine programs so that the input subspace generated
by W P computation is a convex polytope.

The operational profile ‘op’ for a program o is ideally a probability density function

over the input space of the variables in V;,, = {Vi, V5, -+ | Vi } such that,

[ ] iy
VieDy Vi €Dy,

For the present work, we restrict our attention to ‘op’ being defined independently
over each variable € V,,. For each input variable v; € V;, let the probability
distribution ‘op’ be provided over different possible value ranges annotated with
the probability masses. For example, a discretized piecewise uniform probability
distribution for v; can be expressed as ([I},ul], p}), ([12,u2],p2), -, ([}, u], p")
such that "=k pi* = 1. This means that the variable v; is uniformly distributed
within the ranges [I}, u}], [I2, u?] - - - [I¥, u¥] with the probability masses p!, p?,- - - pF

respectively. In other words,

Vi=u§ j
[ A
VieDq ‘/Z'Zlg Vi €Dy

The specification is natural for software running on some digital system with finite
precision. It may be noted that, we have only considered uniform and piecewise
uniform distribution for input variables. However, complex probability distribu-
tions can be typically approximated by dividing the range of possible values or the
range of cumulative probabilities into a set of collectively exhaustive and mutually

exclusive intervals. We follow such an approach here.

Given this input specifications, if there exists an intersection between the con-
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2. Failure Estimation of Behavioral Specifications

vex polytope WP(I; - Sy I+ Sy -+ Sk_1, ;) and the input state space, then with
input variables assuming values from the intersection region, the path 7 actually
executes, i.e., 7 is a feasible path.
Let Pr(m) denote the probability that m executes any random run of the pro-
gram. In case the input operational profile ‘op’ is uniform,
Vol(WP(Iy-Sy-1Iy- Sy Sk_1, ) AN'V;
Pr(m) =) L Vol(V;) ) | (23)

V;

where Vol(C') denotes the volume of convex polyhedron C. In case the input
operational profile is discretized as piecewise uniform, a polyhedron C' can be
decomposed accordingly so that the weighted volume Vol(C, op) may be computed.

The failure probability Pr(o) of the program o can thus be estimated as follows.

1L
Pr(o) =1~ Pr(m) (2.4)

where 11y = {my, ma, - - -}, m = ||

2.1.2 Failure Estimation of programs with loops

Till now we have considered loop-free programs. A loop in a program o corre-
sponds to several program paths depending on the number of loop iteration. Loop
unrolling replaces the loop by as many instances of its body as the number of iter-
ations. Thus, for success probability estimation of o, all generated paths leading
to the success node are considered and success paths and the probabilities of them
are computed as discussed in Section 2.1.1. Apart from the additional requirement
of loop bound analysis, in general, this method will not scale for large programs
with significantly deep loops.

To accelerate the analysis in presence of loops, a technique is proposed which
sacrifices some accuracy while improving scalability. This optimization works on
simple computational loops which do not contain failure assertions. L = ‘while
(C) do S’; The physical significance of such a loop L; is, the program segments
inside do not fail in any event. For failure probability computation of such loops

we apply the concept of Invariant Relations. A loop invariant is a condition that
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2.1.2. Failure Estimation of programs with loops

is necessarily true immediately after each iteration of a loop [MGLT11]. Typ-
ically, modern invariant synthesis tools generate invariants that satisfy a given
post condition in terms of assertions. In our case, the post condition is the asser-
tion defining successful execution region of the subsequent program module. Let
o = o'; [while (C) do S;] S'; A’; 0?; where o/, 0 are prefix and suffix program
segments, S is the loop body, S’ is the basic block immediate next to loop and A’
denote the conditional immediately next to S’. We compute W P(S’, A’) and use
this as a post condition for the loop in order to synthesize a loop invariant ¢ such

that ¢ = WP(S’, A’) if ¢ exists. It may be noted that,
o=0-C-8 - A.-c*+d-(C-S)r-C-9 A o?
such that ¢ is a disjunction of two subprograms,

1. o' executes and ensures C is true followed by execution of S’ which in turn
ensures that W P(S’, A’) is true followed by execution of o2. Let the charac-

terization of this path be, 7%i.

2. ¢’ executes and ensures C' is true followed by execution of the loop for any
finite no. of iterations such that on exit from loop, ¢ is true followed by
execution of S’ making A’ true followed by execution of 2. Let the charac-
terization of this path be, 7%. The computation of o enables W P computa-
tion for loops without unrolling by individually handling both the programs.
Actually for this case, we leverage the concept of path programs i.e., soundly
merging information about executions along multiple paths into one single

path which is 7% in this case.

The first case completely bypasses the loop. Hence, success probability estimation
of this path (Pr(s’)) is computed in a similar manner as discussed in Section
2.1.1. The second case represents the scenario where program flow actually en-
ters into the loop and leaves the loop after some finite number of iterations thus
bringing the invariant into the picture. Current state-of-art invariant synthesis
tools assume a post condition after the loop to be true. Hence, the WP of the
nearest downstream assertion W P(S’, A’) is considered as the post condition while

synthesizing the loop invariant. Let us assume ¢; be the synthesized invariant of
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2. Failure Estimation of Behavioral Specifications

the loop L;. In general, the actual invariant ¢ can be thought of as a disjunc-
tion of invariants which may be possibly uncovered by typical invariant synthesis
tools. Even state-of-the-art invariant synthesis tools cannot generate disjunctive
invariants in most practical situations [GR09]. Hence, in actuality we only have a
partial characterization of ¢ in terms of component loop invariants. Depending on
whether we are able to synthesize some loop invariant or not, two situations arise
which are discussed separately as follows.

Case 1 : In case we are able to generate invariants, i.e. we are successful in iden-
tifying program paths which execute the loop at least once followed by W P(S’, A’)
being true. In general, the synthesis tool may fail to generate the exact in-
variant capturing all possible paths (which satisfy W P(S’, A’)) as provided by
the loop. The exact set of paths for 7% are captured by the Kleene expression
o1-[C+(C-S)"-¢]- S A" 0y while the subset of paths covered by the analysis
are actually oy - [C + (C-S)T - ¢;]-S"- A" - 05. The success probability of the path

containing loop L; can be expressed as,

Pr(rt) = Pr(o’- ((C- S)* - ¢;) - 0%

(2.5)
< Pr(a’-((C-8)"-¢)-0?%)

Since the exact probability contribution cannot be accounted for due to the non-
exact nature of the invariant, we actually underestimate the success probability of
the program execution path which in turn overestimates failure probability leading
to a safe approximation.
Case 2 : In case the invariant generator fails to compute any invariant which
may satisfy the post condition (W P(S’, A")), it is likely that the executing the
loop at least once ensures that the post condition W P(S’, A’) fails since no such
computational path could be discovered. However due to the lack of completeness
of invariant generation techniques, it may not be necessarily true that execution
of loop L guarantees the postcondition to fail. Hence, for this case, we unroll the
loop, generate possible execution paths and add the success contributions of these
paths to the overall success probability of the system which in turn is used to
compute the failure probability of the overall program.

In general, most loops found in actual scenarios require simple quantifier-free

invariants that are conjunctions of variables. For these loops, it is advantageous to
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2.1.3. Estimating Confidence Measure

compute invariants [CH78]. However, some loops (i.e., multi-phase loops) in real
programs fundamentally require disjunctive invariants, for which the synthesis tool
may fail to generate sufficient invariants satisfying W P(S’, A’). To minimize the

overestimation, such loops are unrolled as discussed earlier.

2.1.3 Estimating Confidence Measure

Due to loop approximations as discussed above and specified time and memory
bounds, all the execution paths of the system may not be explored. We propose a
confidence measure to indicate a formal bound of analysis coverage. Let us consider
that after approximating all simple loops, we were able to explore k success paths
with execution probabilities Pr(m), -+, Pr(mg). Let the set of failure assertions
covered by these k paths be Aj. For any A € Ay, let A be the label of an edge
(n, f) where f is a failure node as per the construction of G’,. We enumerate the
set Fy of all such failure nodes and compute the total (success + failure) coverage

for k paths as follows.

coverage = Zilf Pr(m)+ > Pr(m = (ns, f)) (2.6)
i=1 fEF,

where 7 is a failure path with source, target pair = (n,, f). We report this quantity
as the confidence measure. For estimating confidence, we have considered two

distinct cases.

1. For computing the confidence measure in case a program execution path
7 does not contain any simple loop, all failure assertions A; € A, are set
as ‘TRUE’. In effect, while estimating the confidence, both the underlying

success path and failure path (with assertion A; € A, ) are covered.

2. However, this efficiency can not be achieved in case of program execution
path with simple loops whose failure probabilities are estimated using in-
variants as described in Section 2.1.2. This is because while computing in-
variants we might have missed some program paths due to incompleteness
of invariant synthesis. Let A; be the failure assertion just after loop L; in a

path 7. The loop invariant ¢; for loop L; is utilized to compute the failure
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probability of the path 7. If we consider A; as ‘TRUE’ here, the estimated
measure of confidence will be greater than the actual value in case ¢; is not
complete. There might exist paths with unknown status in L;, meaning we
have no information whether these paths contribute to the success or failure
of the program. Hence, we can not provide any guarantee for these paths.
For this reason we consider both the success and failure of A; (i.e., synthe-
size invariants for both A; and A;) and compute the probability of 7 being
explored with success/failure of A;, represented as Pr(A;) and Pr(A4;). Sim-
ilarly, for a path © with two loops L1, Lo having subsequent failure assertions
Ay, As, we again consider all possible success as well as failure scenarios indi-
vidually, i.e, we compute Pr(A;), Pr(A;), Pr(A;Asy), Pr(Ay). Similarly we
can extend the argument for any number of simple loops in a path. All other
assertions apart from the assertions following the loops can be considered as

‘TRUE’ as described earlier.

2.1.4 Generalized Algorithm and Performance Analysis

Our generalized algorithm starts with an input program ¢ annotated with a set of
failure assertions A. Let £, L4, £; denote the sets of looping structure present in
o, loops with assertions inside the loop body and loops followed by an assertion
but no assertion inside the loop body respectively. Hence, L = L,UJXL;. The
procedure MAIN (Algorithm 2) makes a call to PROCESS_LOOP (Algorithm 1) for
synthesizing invariants of the set of loops without failure assertions (£j). In Algo-
rithm 1, the function RANGE_ANALYSIS (Line 5) creates an Abstract Syntax Tree
(AST), generates data-flow equations, iteratively solves them until a fixed point is
reached or till a fixed number of iterations (which can be overwritten manually)
and finally generates the ranges of program variables at each loop entry point.
This step actually provides initial templates (set of ‘assume’ clauses) in terms of
linear inequalities over the program variables and annotates the loops with the
generated assume clauses for invariant synthesis. The function INV_SYNTHESIS
(Line 7) invokes a state-of-the-art invariant synthesis tool and generates invari-
ant relations for each loop [; € L5 wherever possible. Then the invariants are

annotated before the corresponding while loops in o (Line 7). The preprocessed
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program o is considered next for failure analysis (Algorithm 2).

In Algorithm 2, after annotating invariant relations in the loops wherever pos-
sible (Line 8), the loops with assertions (£4) and the loops without assertions
for which invariant relations could not be generated due to the limitations of in-
variant synthesizers (Ly such that £y C L), are unrolled by an user provided
UNROLL_FACTOR (Line 9-10). Then the transformation function p as defined in
Definition 4 is applied (Line 12) on the original program ¢ in order to generate
o’. As discussed in Section 2.1.1, p converts each assertion A; € A into ‘if-else’
conditionals. Let II be the set of success paths in ¢’. Till the set II is not empty,
i.e., if there exists a success path in ¢’, function EXTRACT PATH extracts an unpro-
cessed success path m; € ¢’ and function WP_ANALYSIS is called (Line 13) which
utilizes a third party static analyzer for weakest precondition computation. If
path 7; does not contain a loop [;, it directly computes the volume by calling
VOLUME_COMPUTATION function (Line 23). It leverages model counting tools for
estimating volume of polytopes. The confidence measure is also computed (Line

2) as discussed in Section 2.1.3.

Algorithm 1: PROCESS_LOOP: Process loops without failure assertion

Input: Program annotated with failure assertions

Output: Program annotated with assertions and invariants

1: o + Input program with failure assertions.

: L1 + Set of loops without assertion inside loop body;

A; + Assertion subsequent to l;, for V [; € L

I'; < Set of invariant templates of loop [;; ¢; < Set of invariants of loop I;
I'; + RANGE_ANALYSIS(;); Annotate I; with T;

: for each [; € L5 do

¢4 < INV_SYNTHESIS(I;, A;); Annotate l; with ¢4

. end for

PN Wy

If 7; contains a loop with invariants (I; € (£;\ £Ly)), the estimation of success
probability is optimized as discussed in Section 2.1.2. The loops remains intact
in the path m; while computing the overall success probability. For estimating
confidence, the weakest precondition for both success and failure paths are gener-
ated (Line 15-17), the probability of these paths are computed using the function
VOLUME_COMPUTATION and added with the overall confidence measure (Line 24).
This whole process is continued till there exists an unprocessed path m; € II. Fi-

nally the failure probability along with a confidence measure is returned (Line
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27).

Algorithm 2: Failure Estimation of a program annotated with Failure Assertions

Input: A program annotated with failure assertions, Ranges of input variables with probability distributions.

Output: Overall Failure Probability of a program with a confidence measure.

1: o + Input program with failure assertions; o/ <~ Program after transformation.
2: Ly C L1 + Set of loops without assertions for which invariants could not be generated.
3: L4 <+ Set of loops with failure assertion inside the loop body.

4: TI — Set of program execution path in ¢’; m; — it" program execution path in ¢’
5: P; < Set of Predicates generated for path m;; J; < Set of Conditionals in path ;
6: 7, < Path m; s.t. VA; € J; - TRUE; n, , < Path m; s.t. (VA; € 9;) \ A - TRUE;
7: A; — Set of assertions transformed into Conditional in ¢’

8: o < PROCESS_LOOP (¢)

9: for ecach l; € £ 4 ULU do

10: o+ (¢\ ;)| LOOP_UNROLL(l;, UNROLL_FACTOR )

11: end for

12: o’ < p_ TRANSFORM(0)

13: if 11 # 0 then

14:  m; «+ EXTRACT_PATH(o’); P; < WP_ANALYSIS(m;, Iy)

15:  if l; € m; then

16: P;_ o= WP_ANALYSIS(7, ,,Ij)

17: ¢+ INV_SYNTHESIS(I;, A;); Annotate (I; \ ¢4) with o5

18: P, 4= WP_ANALYSIS(ﬂ; Z’[’“)

19: pi + (P;_a) U(PLZ)

20:  else

21: Ppi — WP_ANALYSIS(7})

22:  end if

23:  Pr(o) + Pr(c)+ VOLUME_COMPUTATION(F;)

24:  Confidence < Confidence4VOLUME_COMPUTATION(p;)

25 M—MO\m

26: end if

27: RETURN (1 — Pr(o), Confidence)

2.2

ProPFA: Probabilistic Path-based Failure An-

alyzer

In this section, we introduce Probabilistic Path-based Failure Analyzer (ProPFA),

an automatic tool for failure estimation of imperative programs. ProPFA takes as

input a program annotated with failure assertions, the discrete ranges of the input

variables and the probability density functions associated with all input variables.

It uses a path based failure analysis approach and finally returns overall failure

estimate of the program with an associated confidence measure. A command-line
version of ProPFA is available at https://github.com/dlohar/ProPFA git. Figure

2.3 shows the overall architecture of the tool. Its input language is C.
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Figure 2.3: Architecture of ProPFA

2.2.1 Key Features of ProPFA

The ProPFA tool leverages state-of-the-art static analysis tools for failure estima-
tion. It is designed as an integrated framework that takes input programs an-
notated with failure assertions and input distributions. Multiple execution paths
are then explored depth-wise and for each path, success predicates are generated
using third party static analyzer. The probabilities of these predicates under the
operating region are computed using lattice point enumeration which in turn is
used for program level failure probability estimation.

We mainly use Frama-C WP plug-in [CKK"12], a source code analysis platform
that generates weakest preconditions of industrial-size C programs, as a third party
static analyzer. For loops in the source code, invariants are synthesized by deploy-
ing state-of-the-art template based tool InvGen [GR09]. Finally, failure probability
computation involves volume computation of convex polytopes which is offloaded
to the lattice point counting tool LattE [DLHTY04].
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Next, we separately describe the components of ProPFA, following Figure 2.3.

« Range Analyzer : This module is a minimalistic Range Analyzer for C-
type programs. It analyzes a program statically and determines an interval
of values for each of its variables at each program point (the abstract analy-
sis result in Figure 2.3). It can also compute the set of discrete values each
program variable can take (the concrete analysis result in Figure 2.3). This
tool is used in conjunction with the invariant generation tool called INVGEN
for generating linear arithmetic invariants. InvGen requires an initial in-
variant template at the beginning of each loop in the program. The range
analyzer provides these templates to InvGen. The range analyzer module is
divided into two major parts : the frontend and the backend. The frontend
consists of two components, a Parser for the input program, which gener-
ates the parse tree and abstract syntax tree(AST). The second component of
the front end is a Data Flow Equation Generator, which takes as input the
abstract syntax tree generated by the parser module, traverses the AST and
produces a control flow graph which is used to generate the set of data flow
equations. The data flow module then generates a set of data-flow equations
from the control flow graph it generated previously.

The backend analyzer solves those data flow equations generated by the fron-
tend. Backend is again subdivided in two parts : one for analysing in the
concrete domain and the other for the abstract domain. The abstract do-
main analyzer also exploits the concept of widening technique to minimize
the number of iterations while solving the equations. Both of these sub en-
gines solve the data flow equations separately in their respective domains

and output the ranges of program variables at each program point.

o Invariant Generation : The input program is parsed and for each while
loop without any failure assertion inside the loop block, ProPFA uses InvGen
to generate invariants. Initial templates for InvGen are provided by the range
analyzer module of ProPFA. Such automatically synthesized templates are
in general precise enough for invariant generation in most cases. InvGen
implements constraint solving approach and finds an instantiation of the

template parameters that yields a safe invariant satisfying the subsequent
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assertion. The invariants are then used to abstract out the loops in the input
program to accelerate failure analysis. ProPFA also computes the confidence

corresponding to the loop under inspection as described in Section 2.1.3.

If no invariant is generated in any of these cases, ProPFA allows loop un-
rolling by user provided unrolling factors. After unrolling, each loop iteration
is considered as a separate program execution path and success probabili-
ties of each path is computed which in turn is used to compute the failure

estimation of the whole program.

o Path Extraction : After abstracting out the loops wherever possible,
within a specified time and memory bound, ProPFA extracts all possible
program execution paths depth-wise. Assertions in each path are considered
for success analysis under the fail-stop failure model until there is no asser-
tion left while the end node of the CFG is reached. The path probability is

computed in similar fashion in order to estimate the confidence measure.

ProPFA generate weakest preconditions for each success path by employing
WP plug-in of Framework for Modular Analysis of C program (Frama-C). It
implements a weakest precondition calculus for ACSL (ANSI C Specification
Language) annotations through C programs. ACSL is a Behavioral Interface
Specification Language (BISL) implemented in the Frama-C framework. It
is interfaced with ProPFA to compute the WP for a program segment P
and post-condition A. The specific goal of input predicate generation is to
find the initial region for which the failure assertion A in the specific path

executes successfully. This region defines the success region of A.

o Failure Probability Computation : In this module, we intend to com-
pute the volume of the convex polytope that is generated by the intersection
of generated weakest preconditions of success paths with the initial input
regions. The discrete domain model counting tool ‘LattE’ is integrated with
ProPFA in order to compute the volume of the success region. If the inter-
section includes the initial input region fully, it guarantees that the program
does not fail for that particular assertion. After estimating success proba-
bilities of all assertions, we estimate the failure probability of the program

employing Eq. 2.4.
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It may be noted that, the ProPFA considers uniform distribution for input
variables within a specified region. It also allows discrete uniform regions of

input variables associated with probability distribution functions.

2.2.2 External Tools Used

In this section we provide a brief overview of the external tools interfaced with

ProPFA.

o Frama-C WP Plug-in : Frama-C [PL10, CKK*12] is a platform dedi-
cated to the static analysis of industry-level C source code base. It has a
collaborative and extensible approach that allows plug-ins to interact with
each other. The Frama-C deductive verification plug-in WP is a tool for
compositional verification of C code based on code contracts. The plug-in
implements a weakest precondition calculus for ACSL annotations through
C programs. It starts with C programs annotated with behavior specifica-
tions and then generates a bundle of proof obligations, i.e., mathematical
first-order logic formula that must be valid in order for each program unit to
meet its specification. All annotations are written as comments, using one of
the notations //@Q --- or /*@ ... @*/, for single- and multi-line annotations,
respectively. We intend to compute the initial predicates in terms of linear
equations. Hence, ProPFA converts the generated proof obligations in terms

of first order logic formulae to linear half space equations.

e InvGen : InvGen [GRO09] is an efficient automatic tool for synthesizing
linear arithmetic invariants for imperative programs. Given a set of initial
templates in terms of boolean combination of linear inequalities over program
variables at a loop entry point, it generates invariants of the loop. InvGen
combines static and dynamic analysis for this purpose. InvGen also deals
with multiple program paths and incrementally generates safe invariants for

each path.

It may be noted that InvGen is highly sensitive to the initial template choices.
If the template is too expressive, e.g., if it admits a number of conjuncts that

is larger than required, then the efficiency of InvGen decreases due to the
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increased difficulty of constraint solving. If the template is not expressive
enough, it can miss paths and few candidate invariants can be missed. Also,
it is not practical to use InvGen for disjunctive invariants, i.e., it can not
handle multiphase loops (loops with conditionals). If it fails to generate
any invariant, ProPFA unrolls the loop and perform the failure estimation

considering multiple program execution paths.

o LattE : LattE (Lattice point Enumeration) [DLDK*12, BBDL*14] is a
software for computing integrals of polynomial functions over polytopes. It
has the ability to compute the exact volume of polytopes. LattE implements
two different integration algorithms for this purpose: 1) Triangulation and
2) Cone decomposition. The first algorithm triangulates the polytope into
simplices and integrates over each simplex. On the other hand, the second
algorithm integrates over each tangent cone of the polytope. Each tangent
cone is triangulated into simple cones for this purpose. The experimental
results shown in [BEF00] confirms that triangulating the polytope is better
for polytopes that are ‘almost simplicial. Cone decomposition works faster

for simple polytopes.

It may be noted that volume computation of polytopes are restricted to

uniform distributions of input variables and linear constraints.

Performance Analysis : The performance of the proposed failure probabil-
ity estimation algorithm is linear in the number of program paths. Let the number
of program input variables, all program variables (temporary + input variables),
loops with invariants and success paths in o be | Vi, |, | V |, | £; | and | IT |
respectively. Also, for each path m; € I1, let m; in Static Single Assignment (SSA)

form contain S; statements and V; variables.

o Frama-C: For generating the weakest preconditions, Frama-C is utilized for

each path 7; € II with S; number of program statements as input.

o InvGen: InvGen synthesizes invariants for | £; | simple loops with assertions
following the loop. The loop might contain all program variables | V' | in
worst case. To generate the initial clauses for InvGen, we spend O(opoc X

FIX _ITR) time in worst case where oo¢ represents Lines of Code in o.
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o LattE: For each program path m; € II the tool LattE is called with | P; |

+2 x V;, number of half spaces as input in worst case.

2.2.3 Results

Success Path Predicates Success Prob. Cumulative Fail Prob.
assert [z < 50]1; (xo — 50 < 0) A 0.50000000 0.50000000
assert [z +y < 100]%; (0 + yo — 100 < 0) A
[y := y + 2]%; (o — 48 < 0)
assert [y < 50]%;
[ :=z+1]°
assert [z > 50]1; (—20+49 <0) A 0.09929494 0.40070506
[ :=x—1]% (xg — 60 <0) A
assert [z < 60]3; (xo 4+ yo — 100 < 0)
[z := 2+ 1)%
assert [z +y < 100)%;
[y :=y+25
assert [z > 50]1; (—zo+49<0) A 0.17035527 0.23034979
[ =2 — 1] (—x0+61 <0) A
assert [z > 60]3; (xo + yo — 102 < 0)

[z := 2 —1]%
assert [z 4y < 100]°;
ly =y - 2%

Table 2.1: Success paths, success probabilities and cumulative failure probability
of the program presented in Figure 2.1

In this section, we show in details the generated results for the program in
Figure 2.1. First, the program is parsed for program execution paths. The ‘if’
conditions are transferred to asserts while generating predicates for the success
paths. Then Frama-C is invoked in order to generate the success predicates. Fi-
nally the success probability of the path under consideration is computed by LattE.
The path probability is also computed in order to provide the confidence measure.

All success paths along with the success probabilities, success probabilities and
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estimated failure probabilities after considering each program execution path are
shown in Table 2.1. The overall failure probability of the program presented in
Figure 2.1 is computed as 0.23034979 with 0.98702970 as the confidence measure.
The overall failure probability is computed by addition of success probabilities of
all the paths and subtracting the result from 1. It may be noted that ProPFA
covers all three program execution paths in the example test-case. Hence, the-
oretically the confidence measure is 1. According to our confidence estimation
presented in Equation 2.6, we leverage LattE, the lattice point enumeration tool,
for estimating the volume of the polyhedron. Due to imprecision associated with
discrete lattice point counting by LattE, practically we estimate the confidence to
be 0.98702970.

Program op LOC A Failure Prob.

Newton-Raphson [-2147483648, 2147483647] ~50 Aes 0.000000001
f#0
Trapezoidal [-32768, 32767] ~50 AeS 0.000030518
b—a>0
Regula-Falsi [-32768, 32767] ~50 A €S 0.000169400
f(®) = f(a) #0
Ay e L
1< Max

Table 2.2: Experimental evaluation of the proposed framework

It may be noted that ProPFA is able to handle piecewise uniform distribution of
input variables. In that case it considers all input subregions while computing
success probabilities of program execution paths.

We evaluate the proposed failure probability estimation framework over a set
of programs from numerical analysis domain in Table 2.2. The operational profile
op and assertions for each program is also presented in Table 2.2. Let a, b, ©, Max
and e denote Lower Limit and Upper Limit for integration, iteration number,
maximum number of iterations allowed and error respectively. Also, f(a), f(b)
denote the evaluation of the function at a and b respectively. It may be noted that

the program inputs are restricted to affine input polynomials only in our case. For
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example, in case of Regula-Falsi method, the function f is a linear function as the

non-linear case can not be handled by ProPFA.

2.2.4 Remarks on different aspects of ProPFA
We highlight several important aspects of ProPFA in details.

e Input Format and Intricacies handled ProPFA takes input two files.
One input file contains the program in C syntax. The assertions are pro-
vided in the proper position using the C-key word ‘assert’. The other file
contains the discrete ranges and probability density functions of all input
variables. The input format of this file is almost identical to the LattE half-
space representation. The only difference is that the discrete ranges of the
variables are provided along with their probability density functions using the
keyword ‘probabilities’ after defining the regions of the particular variable in
LattE format. The path extraction algorithm is implemented in C++ with
sophisticated data structures and the generated proof obligations of Frama-
C are converted into the LattE input format for volume computation using

a separate Python script written for this purpose.

o Invariant Generation The ranges of the program variables used in the
loop are generated by the range analyzer module and are provided as ini-
tial templates to InvGen. The range analyzer module is capable of parsing
and analyzing programs with integer variables only. Complex program data
structures are also omitted. It may be noted that ProPFA is restricted to the
limitations of InvGen as discussed in Section 2.2.2. Hence, for these cases, a

safe over approximation of failure estimation is achieved.

« Weakest Precondition Generation Currently, ProPFA can not handle
disjunctive assertions in a generic way. Complex data-structures as well as
multi-threading unlike [FPV13] are not yet handled in the present version.
Arrays can not be handled as inputs to the program. Also, ProPFA does not

handle nested while loops.

o Failure Probability Computation Due to the limitations of LattE, ProPFA

is limited to linear programs only. Also, ProPFA tackles only uniform dis-
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tribution for input variables for the same reason. The handling of complex
distribution is done in ProPFA in case they are discretized in smaller re-
gions with uniform probability associated with defined probability density

functions.

We applied ProPFA over a collection of 20 test programs. The test programs can
be found here https://github.com/dlohar /ProPFA.git.

2.3 Summary

In this chapter, we have discussed the proposed theoretical framework for failure
probability estimation of imperative programs in C-like syntax. This path based
approach tries to explore all possible execution paths and computes success prob-
abilities of each path which in turn is enumerated to estimate failure of the overall
program. As is evident, it may not be always feasible to consider all program
paths. In that case, a quantitative measure for confidence on the effectiveness of
the estimate is provided. This chapter also presents a brief overview of ProPFA,
an automatic tool for the proposed approach. Subsequently we employ this failure

analysis framework in various domains in the next few chapters.
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Chapter 3

Towards Reliability Analysis of
Component based Software

Systems

Large scale software systems are increasingly invading everyday life. The complex-
ity of such systems mandates assembling off-the-shelf component with pre-specified
functionalities in order to distribute the overall design complexity among relatively
simpler subsystems. For successful execution of such systems, the components need
to be integrated in a reliable manner so that the appropriate functionalities of the
components along with their intended interactions are properly exhibited by the
integrated system. Hence, reliability analysis of such component based systems
at early design stages become a relevant but complicated task. Engineers and
researchers use reliability testing in a wide variety of industrial applications to
determine how well critical components and materials will perform under different
operating conditions.

System reliability is defined as the degree to which a system can perform its in-
tended functionality for a specified period of time. As is evident, failure probability
analysis is a major part of reliability analysis research. Decisions can be made that
influence the design of products so that they meet customer requirements by es-
timating failures. Our proposed framework for failure estimation of behavioral
specifications can be seamlessly employed for reliability analysis of such compo-

nent based software systems. According to IEEE 729-1991 standard, software
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3. Towards Reliability Analysis of Component based Software Systems

reliability is defined as follows.

Definition 6. Software Reliability: Software reliability is the probability of failure-

free operation of a software for a specified period of time in a specified environment. o0

Our notion of system reliability is the reliability at a certain instant of time
(Point Reliability). Point Reliability is defined as follows.

Definition 7. Point Reliability (Rel): Point Reliability (Rel) is defined as the
probability with which a component based software executes successfully at a particular

time instance in a specified environment. m

In this chapter, we explore a formal modeling of component interactions in
terms of reliability and illustrate applicability of the proposed failure estimation
framework towards provable measures of reliability. We always refer to the notion

of point reliability.

3.1 Related Work in Reliability Analysis

Significant studies have been made on reliability analysis in software domain over
the past few decades. There exist a considerable number of reliability models
derived by architectural abstraction for reliability analysis of modular softwares. In
general, such formal reliability models can be classified under two broad categories:
1)Black box and 2)White box [L.796, GPT01, Gok07]. Black box model treats the
whole software system as monolithic structure and concentrates on the input and
output functionalities of the system without analyzing the internal behavior in
the testing phase. This method is mostly used to obtain failure data which is
analyzed to estimate the present as well as future reliability. However, the white-
box model focuses on the components of the system and their interactions for
reliability analysis. Three major approaches for reliability analysis of such systems

in literature [GPMTO01] are presented as follows.

1. State based models: In state based model, the software architecture is
represented as a control flow graph and the interactions between components
are determined by Markov Properties which need to hold true for successful
interactions with components [Lit79, GPT01,GT02,Gok07]. The architecture
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3.1. Related Work in Reliability Analysis

of software has been modeled as a discrete time Markov chain (DTMC),
continuous time Markov chain (CTMC), or semi-Markov process (SMP).
State based models can be further classified into composite and hierarchical
models. Composite models combine the underlying architecture and the
failure behavior in a single model to analyze the reliability of the application.
On the other hand, Hierarchical models divide the architectural modeling
and reliability analysis into two separate stages and thus is more scalable
than the composite models. However, the primary assumptions in the state

based model are as follows.

(a) The reliabilities of the individual components are known or

(b) It determines component reliabilities using the ENHPP SRGM.

2. Path-based models: Path-based models consider software architecture ex-
plicitly and assume that components fail independently similar to state based
models. These models take into account program execution paths for reli-
ability estimation. The reliability of each path is computed as the product
of the individual reliabilities of the components constituting the path for
estimating the program level reliability. The paths are found out either
experimentally [Sho76, KM97] or analytically [YCA99]. Recently, Hsu and
Huang [HH11] proposed an adaptive path-based reliability analysis technique
for complex component based software systems. This work proposes relia-
bility computation methods which can handle sequence, branch and loop
structures. The aggregate path reliability is computed and used as an ap-
proximation of software reliability. In this model also the reliabilities of the

individual components are assumed to be known.

3. Additive models: Each component reliability can be modeled by non ho-
mogeneous Poisson process (NHPP) in this approach. This approach does
not explicitly include the architecture of the software. Then, system failure
process is also NHPP with the cumulative number of failures and failure
intensity function that are the sums of the corresponding functions for each
component [XW95, Eve99].

Several tools have been developed for software reliability estimation. However,
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3. Towards Reliability Analysis of Component based Software Systems

these existing tools either use failure data during phases of software life cycles to
drive one or more of the software reliability growth models or use test coverage
measurements in order to estimate reliability. We present a brief overview of the

tools available for reliability estimation purpose.

« CASRE (Computer Aided Software Reliability Estimation) [LN92] was de-
veloped as a software reliability measurement tool that is easier for nonspe-
cialists in software reliability engineering to use than many other currently-
available tools. It allows users to determine whether a set of failure data
indicates that the system’s reliability is increasing during test, whether it is
decreasing, or whether there is no discernible trend. CASRE incorporates
the mathematical modeling capabilities of the public domain tool SMERFS
(Statistical Modeling and Estimation of Reliability Functions for Software)
[FS93].

« SoRel (Software Reliability analysis and prediction) [KKLM93] provides
qualitative and quantitative elements concerning a) the evolution of the reli-
ability in response to the debugging effort, b) the estimation of the number
of failures for the following periods of time so as to plan the test effort and
the numerical importance of the test and/or maintenance team and c) the
prediction of reliability measures such as the mean time to failure, the failure

rate or the failure intensity.

« SHARPE (Symbolic Hierarchical Automated Reliability and Performance
Evaluator) [HSZTO00] is a general hierarchical modeling tool that analyzes
stochastic models of reliability, availability, performance, and performabil-
ity. SHARPE models were designed to answer the question: given time-
dependent functions that describe the behavior of the components of a sys-
tem and a description of the structure of the system, what is the behavior
of the whole system as a function of time? The functions might be cumu-
lative distribution functions (CDFs) for component failure times, CDFs for
task completion times, or the probabilities that components are available at

a given time.

« SREPT (Software Reliability Estimation and Prediction Tool) [RGT00]
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implements several software reliability techniques including complexity met-
rics based techniques used in the pre-test phase, inter failure times-based
techniques used during the testing phase, and architecture-based techniques
that can be used at all stages in the software’s life-cycle. SREPT also has
the ability to suggest release times for software based on release criteria, and
has techniques that incorporate finite repair times while evaluating software

reliability.

« ReliaSoft’s BLOCKSIM [WLV04] software uses Reliability Block Dia-
grams (RBD) and Fault Tree Diagrams (FTD) as underlying system models
for performing reliability analysis, maintainability analysis, availability anal-
ysis, reliability optimization, throughput calculation, resource allocation, life

cycle cost estimation and other system level analyses.

A recent approach [FPV13] provides a source level reliability analysis method
built on Symbolic Path Finder (SPF). SPF determines failure and success path
conditions by executing the source code using symbolic inputs. In [FPV13] a
bound is set for unfolding the loop constructs. If the bound is reached and loop
condition does not fail, SPF backtracks and generates path conditions for which the
success status is unknown. The method is also applicable towards multi-threaded

programs.

3.2 Motivation

Most of the existing reliability analysis mechanisms either assume predefined reli-
ability values for individual components or implement statistical software testing
methods for estimating reliability of the system. With reliability and safety stan-
dards becoming increasingly strict in diverse mission-critical domains like automo-
tive, avionics, nuclear plant control etc., the software development standards in
such domains (e.g. DO-178B/C and AUTOSAR recommendations) mandate the
use of formal methods to ensure reliability and safety. Hence, in the context of
system development, a formal modeling of component interactions in terms of reli-
ability becomes a desirable design attribute. However, exact reliability estimation

employing formal methods without any notion of abstraction on the source code
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can be expensive and infeasible. Further, component software may be available
from third party in a closed source form. In such cases only the interface specifi-
cations may be known along with the behavior without any information about the
exact implementation details.

The present work provides an approach to estimate reliability of component based
software systems by statically analyzing the top level description of the compo-
nents and their interactions tagged with assertions. The assertions characterize
operating regions for components and associated reliabilities. These assertions are
termed as Reliability Assertions. The assertions, if not satisfied lead to the failure
of the overall system under the assumption of fail-stop failure model. Such relia-
bility estimates are particularly useful at an early stage of design when multiple
implementation options have been developed for components but the integration

phase is yet to begin.

Deriving exact analytical estimation of reliability for the entire component
based implementations may become computationally impractical. For such sys-
tems, if the system validates a given reliability target (Rr) for a given operational
profile satisfying established standards like ISO/TEC, Functional User Require-
ments (FUR), the design is considered acceptable. Hence, validating a reliability
query rather than full system reliability estimation seems to be a more relevant
question in the context of requirement driven construction of large scale systems.
Before undertaking an actual system integration step, the validation of a reliabil-
ity requirement significantly saves memory and resources. In case the estimated
reliability does not meet some minimum target reliability for a given choice of com-
ponent options, an alternate choice of component options produced using diverse
development methods can be considered and the resulting system level reliability

may be checked.

The present work provides a formal approach for reliability estimation by con-
sidering success probabilities of all program execution paths along with a confi-
dence measure. As it is not practical to consider all program execution paths
because of a possible exponential blowup, a reliability validation method is also
proposed. This approach overcomes the intricacies of multiple execution paths by

inspecting an adequate set of highly probable execution paths.

For analyzing reliability formally, the system needs to be modeled. All spec-
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ification models explored so far are either too high level or source code analysis.
Formulation of very high level models from source code is not verifiable, also they
might not capture intricacies involved in the implementation. Again, for large
scale software systems formally analyzing the source code is also not practical. We

illustrate our specification model in the subsequent section.

3.3 Component Specification Model

As a part of specification model, the top-level behavioral description ¢ of a compo-
nent based software system along with a set of components C, their functionalities
and a set of reliability assertions A (in C syntax) are provided. This top-level soft-
ware (or its specification) activates components and controls their interaction. For
each component C; € C, the testing phase has revealed a set of mutually exclusive
reliability assertions Aj,---, A, € A, characterizing input regions. Using such
assertions, test suits are generated which test the component for each operating
region. For example, consider an operating region characterized by a reliability
assertion A such that a test suit of 1000 test vectors was created satisfying A. Out
of the 1000 test runs, black-box testing of the component reports 9 independent
failures. Hence, the reliability of the component under the operating region char-
acterized by A is assumed to be 0.991.

Problem Statement : The top-level behavioral description ¢ along with a set
of components €, their functionalities in terms of sequential program statements
and a set of reliability assertions A are provided. For each component C; € C,
the testing phase has revealed a set of mutually exclusive reliability assertions
Ay, .-+ A, € A, characterizing input regions for which the component exhibits
reliabilities ry, - -- ,r, respectively. Before undertaking an actual system integra-
tion step, the objective is to analyze reliability of the overall system specification
o which shall be deploying the components in C' given an input operational profile,
i.e, the set of probabilities with which the inputs may be originating from different
specified input regions. It may be noted that the exact implementation details of
each component is not available. Instead the functional behavioral description of
each component is considered to be provided.

The problem of reliability analysis can be seamlessly mapped to the problem
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of failure estimation of behavioral specifications presented in the previous chapter.
The top level description o of the component based system is considered as an
imperative program represented in C-like syntax. Considering reliability assertions
of o as failure assertions, we can estimate the success probability of the program
which brings the notion of reliability estimation at one time instance in this case.
Again, as we estimate the success probabilities utilizing the concept of program
execution paths, it is also viable to validate a target reliability Ry considering a

set of more probable program execution paths.

3.4 Reliability Estimation

Our theoretical framework described in Chapter 2 for failure estimation of behav-
ioral specifications can be seamlessly employed for source level reliability estima-
tion of component based software systems expressed in terms of C program (o).
Let n be the total number of program execution paths in . The success probabil-
ities of each path can be enumerated in order to estimate the reliability of . This
method is useful as it provides provable guarantees for the estimated reliability of

the system. Reliability in terms of failure probability (Pr()) is defined as follows.
Rel =1— Pr(z) =Y _ Pr(m) (3.1)
i=1

Also, a confidence measure is provided with the reliability measure. Confidence
is computed as the summation of execution path probabilities explored so far (as
discussed in Chapter 2).

Running Example : As an example, let us consider a software system described
in Figure 3.1. The system specification comprises seven components (Cy, Ca, - - - C7).
The assertions before components C4, Cs, C5, C; imply that the components are
tested within this region and their success probabilities are also given as shown in
Figure 3.1. For simplicity, we have assumed that components C3, Cy, Cy are fully
reliable. If the variables x and y are uniformly distributed over the range [0,100]
and [0,50] respectively, the reliability of the system is computed as 0.97861. Hence,
employing ProPFA, we can compute the failure probability of the program, from

which the reliability of the system is computed. This method can be employed for
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void main(int x, int y)

{
if (x <50){
assert(z +y < 100); A,:assert
y=y+2; X+y<100 Cyix=x-1
< R Rel=0.999
asiert(gl/‘_ 50) ; 360
r=r+ 1 C,iy=y+2
else
r=1x—1; A,:assert Cpix=x+1 Ce: x=x-1
if (z < 60) y<50
r=x+1; Rel=0.98 A,:assert assert
assert(z +y < 100); x+y<100 X-y<100
y=y+ 2; Rel=0.8 Rel=0.92
olse 1 C,:x=x+1 Cyry=y-2
r=x—1;
assert(z +y < 100);
y=y—2;
}

Figure 3.1: Reliability Estimation Example

variables with other distributions in case the variables are independent and can
be discretized into smaller intervals. Within that interval, the distributions of the

variables can be considered as uniform.

3.5 Reliability Validation using Program Path

Enumeration

In Section 3.4, we have discussed a formal approach towards reliability estimation
that involves enumeration of success probabilities of all possible program execu-
tion paths. Computation of such exact reliability figures may be expensive and
even infeasible for complex component based systems with exponentially many
possible program execution paths. As it is not possible to explore all paths within
a predefined time and memory bound, an estimate is returned with a confidence
measure in such cases. The drawback of this method is that it might return a very
low reliability value with low confidence, which is futile. Yet a minimal reliability

guarantee may often be validated in many cases, by inspecting a small number of
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highly probable execution paths. This problem of reliability validation is relevant

while checking reliability guarantees at early design stages.

In literature, there are two possible methods for validating reliability: 1) Phys-
ical testing methods and 2) Analytical estimation methods. The former physically
tests each of the components in order to verify whether the system achieves its
targeted reliability. The later validates the reliability of a design analytically using
detailed reliability models as references. However, for complex systems, exhaus-
tive physical testing of the entire implementation is unrealistic. Deriving reliability

bounds using exact analytic methods may also be computationally impractical.

The present work provides a formal approach for reliability validation that
overcomes the intricacies of multiple execution paths by inspecting an adequate
set of highly probable execution paths. If the enumerated probability of executing
a set of paths is ¢, the contribution in failure probability from unexplored paths
is at most (1 — ¢) by conservatively considering all of them as failed paths. With
probability ¢ being sufficiently high, we can (over)-estimate the failure probability
of the system which leads to deriving a lower bound on the reliability of the overall
system. If the reliability bound thus computed is higher than some target relia-
bility (Rz), the unexplored execution paths need not be considered. Otherwise,
the less probable paths are searched to satisfy Rp. If there is no path available
for path reliability analysis, the method infers that the system does not maintain
its minimal target reliability with a certain confidence measure depending on the
path coverage. ! Our idea of employing an adequate set of paths for reliability
validation is philosophically influenced by existing work on static program anal-
ysis [SCG13]. However, we provide a more methodical approach while choosing
such set of paths. Figure 3.2 depicts our validation procedure. The behavioral
description of each component C; along with the integration logic and reliability
assertions are specified in terms of a C program o. We try to validate whether
it meets a desired reliability target Ry. The program o has a set of n program
execution paths II = {m,mg,- -+ ,m,}. Within the time and memory bound, the
method keeps on exploring paths and accumulating their success probabilities. If

Rr is validated already, the process stops there, else it iterates over other pos-

'Tt may be noted that it is not practical to consider all program execution paths because of
a possible exponential blowup.
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Figure 3.2: Framework for Reliability Validation

sible execution paths. Due to predefined bounds it might happen that R; can
be validated with a few execution paths, but these paths are not explored during
the process. In order to handle this problem, we propose a heuristic approach to
explore an execution path which is more probable at that point of time (locally
optimal) and compute the probability of that path. In that way, chances are higher
that we could end up actually validating the reliability inside the time bound spec-
ified as the more probable paths affect the overall reliability by a higher degree.
This greedy heuristic is explained with an example system shown in Figure 3.3.
The system needs to ensure a reliability of at least 0.80. The system comprises
six components C, Cy, C3,Cy, Cs and Cg shown in red in the CFG. Components
C1, Cs, Cs and Cy are tagged with reliability assertions while C'3 and Cy do not have
any reliability assertion indicating that these two components execute successfully
for every possible inputs. Each reliability assertion is labeled with reliability values
determined using test data. The operational profile (op) indicates that the inputs
x and y are uniformly distributed in the range [0, 100] and [—10, 50] respectively.

We propose a greedy path selection strategy in order to choose locally optimal
program execution paths. The CFG of a given program o is traversed depth-
wise and execution paths are uncovered. While traversing the CFG, at every
decision node (either an if-else or a loop), a local choice of most probable path
(computing probability of path condition) is made by the greedy path selection
strategy. The strategy extracts the conditional and computes its probability w.r.t.
the current path. Based on the probabilistic likelihood, a path (if or else) is chosen
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of Component based Software Systems

function func(int x,int y)
if (z <50)
assert (v +y < 100);
y=y+2;
assert(y < 50);
x=x+1;
else
if (x < 60)
z=0
while(z < y)
r=x+1;

Assert (x+y <100)
Rel: 0.999

C.:

T
yi=y+2

Assert (y <50)
Rel: 0.999 I_j

L

x:=x+1

TAssert (x+y <150)
|, Rel:0.999

écs:

| Xi=X+2

if (y > 0) v L% >65
assert(x ==y); \
r=x+1 ¢ Y
else @ |
while(x < 65)
assert(x +y < 150) ;
r=x—5;
return O;

iAssert (x==y) |

v i
Rel:1.000 !
Cszm\ xy

X:=x+1 @

Figure 3.3: Reliability Validation Example

or a loop is unrolled by one level in each pass. The alternative path choices which
are not taken at this point of time are enqueued in a priority queue for next-
level consideration if required. After extracting the highest probable path chosen
locally, failure probability of that path is computed as discussed earlier. If there
exists a loop for which the loop invariant is generated, the reliability evaluation
is accelerated using the synthesized invariant. In this case, all paths generated by
the loop are considered for reliability validation. At node 1 in Figure 3.3, both the
‘if” and ‘else’ branches are equiprobable (probability=0.5). Hence the ‘if” branch
is chosen and the execution path is explored which is considered for reliability
computation next. The reliability of path (1 —2 -3 —4 —5—6) (colored in solid
blue) is computed as 0.48236715. It does not validate the target reliability of 0.8.
The ‘else’ branch is then considered for reliability analysis next. At node 8, a
locally optimal decision is taken and ‘else’ branch is considered as the probability
of ‘else’ branch (probability = 0.4) is higher than the ‘if’ branch (probability =
0.1). After exploring path (1 —7 —8 — 16 — 17 — 20 — 6) (colored in solid blue)
the enumerated reliability is estimated as 0.8470045. As this set of paths already
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guarantees the targeted reliability, the less probable dotted paths are safely left

out from the analysis.

It may be noted that computing the most probable global path choices will not
scale and goes against the philosophy of the validation method. Hence, the path
selection strategy employs local path selection based on probabilistic likelihood.
Inside a preset time and memory bound, if the accumulated reliability meets the
target, the validation becomes successful. Otherwise it returns the estimated reli-
ability with a confidence measure. The reliability validation algorithm is described
below.

Algorithm 3: RELIABILITY_VALIDATION

Input: CFG of a program CFG, annotated with reliability assertions, ranges of input variables with
probability distributions and a Target Reliability Rr.
Output: Returns ‘TRUE’ if Ry is validated, otherwise returns a reliability estimate (Rel) with an associated

confidence measure(Con fidence).
: II + Set of program execution paths; nstqrt < Start node
: J « Set of conditionals; I; € J « "
Rel =0
: S« INITIALIZE_ MAX_PRIORITY_QUEUE()
: VISITED[I1,- -, In] + FALSE
: while Rel # Ry && Il # ® do
7; < EXTRACT PATH (CFGq,nstart)
Rel = Rel+ COMPUTE_SUCCESS_PROBABILITY (7;)
Confidence <+ EVALUATE CONFIDENCE(7;)
10: O« TII\m
11:  if Ry > Rel then
12: CONTINUE
13:  end if
14: end while
15: if Rel > Ry then
16: RETURN TRUE
17: else
18:  RETURN (Rel, Confidence)
19: end if

conditional

@

Algorithm 3 describes the reliability validation procedure. A max priority
queue (S) is initialized first (Line 4). A list containing the global markers for
all conditionals in the program o is declared as ‘False’ (Line 5) initially. These
two data structures are utilized while extracting locally optimal paths. Then the
path extraction function EXTRACT_PATH is called (Line 7) that takes as input
the CFG of o denoted as CFG, and the start node nge+. EXTRACT PATH
greedily explores a local optimal path (7;) which is considered for reliability es-

timation (Line 8,9). The functions COMPUTE_SUCCESS_PROBABILITY (7;)
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and EVALUATE CONFIDENCE(w;) basically utilizes the algorithms described
in Chapter 2 in order to estimate the success probability of m; and confidence
measure after considering m;. This process is continued until Ry is validated or
all paths are explored. If Rr is validated in the process, it returns ‘TRUE’, other-
wise it returns the estimated reliability associated with a confidence measure (Line

15-19). Algorithm 4 illustrates the path extraction algorithm in details.
Algorithm 4: EXTRACT_PATH (CFGy, s)

Input: CFG of a program CFG, annotated with reliability assertions, start node s and Ranges of input

variables with probability distributions.
Output: Returns a locally optimal execution path .
1: o; < Program segment till conditional I;; I; < Else branch of the conditional; 7 initialized to ®
2: if s # I, then

3 m+aUs

4: I, + TRAVERSE (CFG,,s)

5: if VISITED[;] == TRUE then

6: I; + REMOVE_MAX_ELEMENT()
7 T T U I;

8: EXTRACT_PATH (CFGo,, I;)

9:  else

10: VISITED[I;] == TRUE

11: P; + WP_ANALYSIS(;, I;)

12: Pr(I;) + VOLUME_COMPUTATION (FP;)
13: if Pr(I;) > Pr(I;) then

14: INSERT_ITEM(Pr(I;), I;)

15: T4 T U I;

16: EXTRACT_PATH (CFG,, I;)
17: else

18: INSERT_ITEM(Pr(1;), I;)

19: pi —nJI;

20: EXTRACT_PATH (CFGo, I;)
21: end if

22:  end if

23: else

24: RETURN =

25: end if

Algorithm 4 tries to greedily explore an execution path with highest execution
probability recursively. The algorithm begins with a start node, traverses till the
next branching node I; (Line 4) in case the start node is not the last conditional (I,,)
present in o. The truth value of VISITED[I;] indicates the node is already visited.
In that case, the priority queue S is dequeued in order to extract the branch with
highest probability among all branches explored so far (Line 6). The function
REMOVE MAX ELEMENT is the standard dequeue function defined for S.
Otherwise, the VISITED list entry for this branching node becomes ‘TRUE’ (Line
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10). The probability of the branching node I; is computed next (Line 11-12) and
the path with higher probability is explored (Line 13). The other path condition
is stored in the priority queue (Line 14, 18). The function INSERT ITEM is
the standard enqueue operation with the conditional probabilities as comparators.
Then it chooses the next start node accordingly and calls itself recursively until
the path with highest probability is extracted (Line 24).

Observe that it is not necessary for the most likely path to also be the most
reliable. Since the reliability contribution of any path is dependent on both the
likelihood of execution as well as the failure probability, a path with higher prob-
ability may not always provide higher reliability contribution. In that way, our
choice of paths are not necessarily optimal w.r.t. reliability contribution.

Running Example : The behavioral specification model in Figure 3.3 demon-
strates the proposed reliability validation algorithm of a component-based system.
If Ry is increased to 0.9999, the dotted paths need to be considered for validating
Rr. Given the current path {1 — 7 — 8}, the extended path {1 —7 — 8 — 16} is
more probable than the extended path {1 — 7 — 8 — 9}. However, extending the
path {1 —7—8— 16} further, the probability of the loop Ly being executed is less
than the execution probability of the path {1 —7 —8 —9}. Hence {1 —7—8—9}
is considered first according to the greedy path selection strategy.

Subsequently, an invariant is synthesized for loop L; and the path {1—-7—8 —
-+ — 14 — 15 — 6} is considered with the loop invariant. With this set of paths,
the current reliability estimate is 0.9370045 which does not validate Ry = 0.9999.
Therefore loop Lo is fully unrolled generating all the possible paths within the
predefined time and memory bound. The reliability is estimated as 0.9869545
with a confidence measure of 0.99625. This implies that, 99.625% of all the paths
are considered in the analysis. Still the reliability target of 0.9999 is not satisfiable

with the existing component choices.

3.6 Results

In this section, we show in details the generated results for the program in Figure
3.3. We have assumed two Target Reliability values for this cases and examine

whether the target reliabilities are validated. If validated, the program returns with
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‘TRUE’ value along with confidence 1. Else, an estimate measure of reliability is
returned with a confidence measure. Execution paths considered following the
greedy path selection strategy, Target Reliability, Cumulative Reliability values
after considering one execution path, return value and the confidence measure are
shown in Table 3.1.

Target Rel Path Cumulative Rel ReturnVal Confidence
0.80 <1-2-3-4-5-6> 0.48236715 TRUE 1.0000
<1-7-8-16-17-20-6> 0.8470045
0.99 <1-2-3-4-5-6> 0.48236715 0.9869545 0.99625

<1-7-8-16-17-20-6> 0.8470045
<1-7-8-----14-15-6> 0.9370045
<1-7-8-----19-20-6> 0.9869545

Table 3.1: Experimental evaluation of Reliability Validation framework

For the next set of experiments, we have considered a Binary Tree implementation
as discussed in [FPV13] with only two actions: addition (a) and deletion (d). It
is known that this implementation has a bug which is triggered only when the
deletion operation is performed in case of non-leaf nodes. The assumption on the
action profile states that the addition operation adds elements in the range [0, 10]

and delete operation deletes elements in the same range. Figure 3.4 explains the

G @ Addition: 4, 10, 1, 5
Deletion: 10

Figure 3.4: Binary Tree Example

scenario.

Let us assume that 4 addition and 1 deletion operations are performed sequen-
tially. According to the action profile, addition operation adds nodes to the tree

by taking elements uniformly from the range [0, 10]. Deletion operation selects
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elements uniformly from the range [0, 10] and deletes nodes from the tree. In
Figure 3.4, the elements 4, 10, 1 and 5 are added according to the binary tree
structure. The deletion operation tries to delete element 10. Hence, the action
sequence is as follows: <(a, 4), (a, 10), (a, 1), (a, 5), (d, 10)>. Due to the bug in
the implementation, this causes failure of the program.

We aim to estimate the reliability of the code for 5 possible sequences of ad-
dition and deletion operations. These different sequences are used to form single
monolithic programs. It may be noted that no loop is present in the analysis. The
failure assertion states that the deleted node does not have any child. If the as-
sertion is violated, the program fails due to the known bug in the implementation.
Considering the action profiles, Table 3.2 presents the reliability results along with
a confidence measure obtained for this binary tree implementation. It also men-
tions the number of delete and addition operations performed the sequence of the
operations. All experiments are carried out in x86_ 64 architecture based Intel(R)
Xeon(R) CPU E5-2667 system. It may be noted that ProPFA does not handle
complex data structures. Hence, all complex data structures were reconstructed

using simpler data structures like arrays presenting 5 sequences of operations in

C.

Action No. Sequence Action Profile Reliability Confidence

Delete 3 <d,a,a,d,d> [0, 10] 0.98889 0.99831
Add 2 [0, 10]

Delete 2 <a,d, a,a, d> [0, 10] 0.95174 0.99831
Add 3 [0, 10]

Delete 0 <a, a, a, a, a> [0, 10] 0.99997 0.99831
Add 5 [0, 10]

Table 3.2: Experimental evaluation of Reliability Analysis framework

3.7 Summary

In this chapter, we have explored an application of the theoretical framework

proposed in Chapter 2 in the domain of reliability. As is evident, the framework
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can easily be employed in source level reliability estimation of component based
software systems. Based on path coverage, a measure of confidence is also provided
with the estimate. For reliability validation we propose a greedy strategy where
execution paths are explored based on their likelihood. If the validation becomes
successful within a predefined time and memory bound, the algorithm returns

‘TRUE’. Else, it estimates the reliability with a certain confidence measure.
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Chapter 4

Formal Analysis of Control

Software

In this chapter we have addressed two different classes of problems in the domain
of control systems, one being the formal analysis of control theoretic properties and
the other being safety analysis of embedded control software. Embedded control
software implementations are generally required to meet strict control theoretic
performance guarantees. While these properties are mathematically verifiable for
the underlying control law at the time of design, there does not exist any stan-
dard methodology which may formally verify the same over the actual program
implementation of the software. We attempt to formally analyze the failure of
these control theoretic properties given the exact implementation of the system
as C-programs. Other class of problem deals with safety analysis of embedded
software. We present a source code based safety analysis of embedded control
software systems given the exact behavioral logic specification annotated with the

safety requirements in terms of safety assertions.

4.1 Formal Analysis of Control Theoretic Prop-

erties

In traditional sampled data systems for controlling continuous plants, embed-

ded control software implementations are generally required to meet strict timing
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and performance guarantees. These control theoretic performance guarantees are
mathematically verifiable for the underlying control law at the time of design in an
ideal scenario. Unfortunately, the implementation details are not captured here.
Hence, it lacks formal assessment of the applied control strategies over the actual
program implementation of the software because of software bugs, sensor errors
and imprecisions in finite bit-width representation. In this work, we present an
approach to perform automated static analysis of controller code for guaranteeing

such properties of the controlled physical system.

One of the most important control theoretic properties is stability, the require-
ment that the physical plant converges to the desired reference behavior under the
control actions of the controller in a desired operating region. The theory of control
provides a mathematical foundation for stability analysis of dynamical systems.
A model of the dynamical system to be controlled is constructed as a set of equa-
tions and a feedback controller is designed for providing the controller inputs to the
plant based on the plant state observations. The plant + controller model is then
analyzed to ensure stability of the system. If the system is stable, the complete
implementation in hardware and software is done. However, the mathematical
analysis does not guarantee that after implementation, effective control perfor-
mance offered by the system continues to hold in actual hardware and software
with discrete sensing and actuation of physical signals, limited precision arithmetic,
potentially faulty sensors and actuators and uncertainty related with external dis-
turbances like environmental noise fluctuations beyond a threshold up to which the
control law is robust. In such scenarios, wrong measurements to the controller are
provided. Computing control actions over such wrong sensor measurements and
actuating the plant can lead to violation of stability. Hence, it makes sense to ana-
lyze the risk involved in control software with bounded environmental uncertainty
considering the exact implementation of control software in terms of imperative
programs. Existing works rely on extensive but non-exhaustive simulation of the
code to ensure that the implementation satisfies the stability properties proved for
the mathematical model. For transient faults, the control law is adjusted in regard
with the fault [GMGB™14]. Also, methods for synthesizing finite precision control
laws with provable stability regions have been discussed in [TP06]. However, there

does not exist any standard methodology which may formally verify stability of
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the controlled system over the actual program implementation of the software.
The present work provides a methodology for automatic formal analysis of
control system implementations for stability property. In presence of initial dis-
turbance, we perform static program analysis on the software code implementing
the plant + controller to compute failure probability of stability criterion in a spe-
cific environment given a system level uncertainty profile emanating from sensor
noise. Our failure analysis framework can be seamlessly employed for estimating
the failure probability of the stability guarantee. If this probability is high, the
control designer may then be asked for remedial measures like synthesizing a dif-
ferent control law or restricting the application of the existing control law on a
different possible state space region. It may be noted that this approach is not
focused on fixed-point control implementations as done in [AMST10] where the

authors study the implication of such implementations on the control guarantees.

4.1.1 Theoretical Background

Typically the specification of the dynamics of a discrete time, linear time invariant
plant ¥ = (4,, B,) derived from a continuous time plant with sampling period T

can be captured by the following equation.
x(t+1) = Ax(t) + Bu(t) (4.1)

where, the vector x(t) gives the plant state vector at some time instant ¢ € N
and u(t) defines the control input at the ¢-th time instance. Thus, for z(t) € R",
A € R™ and B € R™™, where m is the dimension of the control input, we

assume a state feedback control action of the following form.
u(t) = —Kx(t) (4.2)

In this work, we analyze Ezxponential Stability Criterion as one of the control the-
oretic properties and attempt to estimate the failure probability of it by statically
analyzing the plant + controller implementation in C-syntax (o) leveraging our
proposed framework. Following [WAOQ7], the notion of exponential stability is de-
fined subsequently.
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Definition 8. Exponential Stability: A linear time invariant plant ¥ = (Ap, Bp)
is (L, €)-exponentially stable, with L € N and € € (0,1], if

t+ L
[lz(t + L)|| (4.3)
[lz(#)]]
for every t € N and x(t) € R™, where ||.|| represents the euclidean norm (2-norm). o

For a control system operating in ideal conditions with no sensor error, it is
expected that the plant is exponentially stable. In presence of sensor errors, the
plant might not satisfy the stability criterion. It may be noted that, we only
investigate the behavior of the control system in the presence of transient faults

affecting the sensor readings.

4.1.2 Reliability Estimation of Control Software

Sensing(Sampled Data Communication)

External u - >T
Noise i X(t) Set
Point
Y
External ﬂant X(t) [Contrpl Software
Input running on ECU
4 Discrete
System
Continuous System [% u(t)
Actuation Signal

Figure 4.1: Control System Model

We consider an autonomous system X as shown in Figure 4.1. Starting from a
fixed reference point, the exponential stability requirement states that X converges
to the desired reference behavior under the control actions of the controller in
presence of an initial disturbance d;,,;; which is assumed to be uniformly distributed
in the range [0, d;n;]. At any control loop iteration, the plant variable x can be
disturbed by a high frequency noise spike (E) with an amplitude equi-probable
in the range [—d,d]. We have considered a specific upper bound (n4) on the

number of transient noise spikes that can be introduced in the system. This defines
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our notion of environmental uncertainty specification U. The control software
implementation of ¥ is also provided in terms of a C-program o. Our goal is
to estimate the reliability of the control software implementation (o) given the
environmental uncertainty (U). We have defined reliability of control software as

follows.

Definition 9. Reliability of Control Software Implementation: The reli-
ability of a control software implementation Rel(o) is considered as the probability with
which the system, in presence of an initial disturbance, satisfies a given control require-

ment for a specific uncertainty specification U starting from a fized reference point. o

The actual implementation of plant and controller is presented as a C program
o embedded with the required stability criterion as an assertion. Formally, the
problem can be stated as follows.

Problem Statement : We are given an actual C-implementation of plant +
controller system (o) annotated with the stability criterion (L,€) as an assertion.
Considering an environmental uncertainty profile U, we intend to compute the
reliability of o after L control iterations in presence of an initial disturbance d; .

We summarize the steps of our analysis for computing the reliability of a control

software implementation as follows.

Plant + Controller Fixed Ref. Point Error
Description Initial Dist. Profile
% J H
Exp. Stability Program Tem- - Program Path
Requirement plate Synthesis Extraction
\ v
Reliability _ Confidence Reliability
Assertion Gen. Measure Estimation

Figure 4.2: Reliability Estimation of plant control system

1. Given the instances of o, U and d;,,;; along with an (L, €) exponential stability

criteria, we create n template programs o; such that Vi,1 < ¢ < n. The
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template program o; starts from an initial reference point with an initial
disturbance d;,;; and captures L consecutive rounds of closed loop control

execution in presence of sensing errors.

2. The (L, €) exponential stability is embedded within o; as an assertion whose
success probability we want to estimate. We derive suitable linearized con-

ditions that safely approximate the quadratic condition.

3. We employ our failure analysis framework ProPFA which extracts program
paths from o; and computes their weakest pre-conditions (WPs) subject to

the conditions derived in the earlier step.

4. ProPFA computes the reliability for o; by employing LattE. Eventually the

reliability of o is estimated by accumulating the reliability values of o;.

Running Example: We illustrate the proposed approach over a linear double
integrator circuit presented in Figure 4.3, which is one of the most fundamental
systems in control applications. The output voltages o; and oy of the two Op-
amps are the state variables of the plant and u is the input voltage. The aim of
the controller is to control the final output voltage 0,. We intend to estimate the

reliability of this system.

il

Figure 4.3: Double Integrator circuit

Using a sampling rate of 0.01s the dynamics of the discrete time LTI system is as

(1) = [ _11 ?]xp(t)—l— [ ;; ] u(t)
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y(t) =10 1]z,(t) (4.4)

A discrete-time Linear Quadratic (LQ) state feedback controller corresponding to
this plant model is designed in MATLAB, which regulates the output voltage x-

to OV | whose dynamics is provided here.
u(t) = | 0312 0.049 | z.(t)

Starting from a fixed reference at (z1,x9) = (0,3) our goal is to estimate failure
probability of the stability criterion (L, €) where L is 20 and the value of € is 0.1.

The environmental uncertainty specification U states the following.

 An initial disturbance (d;,;) uniformly distributed in the range of [0, 10] is
added with the plant variable x.

e In L consecutive control loop iterations, the maximum number of sensor

errors (ng) due to transient faults present in the system is 2.

 Sensor error profile (E) is expressed as an uniform distribution function in
the interval [-5, 5].

We provide detailed description of the reliability estimation methodology on the

double integrator circuit and elaborate on different phases of the approach.

o Program Template Synthesis: As stated earlier, the semantics of a loop
free template program o; captures L consecutive rounds of closed loop con-
trol execution. It starts from a fixed reference value of the plant state vector
x(0) (at time instant 0). Next, in addition to computing the control law and
simulating the plant for L iterations, the template program ¢ introduces dis-
turbance in the plant variables as sensed by the controller in some choices of
control loop iterations according to the uncertainty profile U. The template
program o also contains the assertion validating the (L, €) stability require-
ment. The other phases of the framework works on the synthesized template
program o and reliability of ¢ is estimated. This process continues until a
maximum of ngy number of disturbances are introduced in all possible com-

binations of L consecutive control loop iterations. For the double integrator
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circuit, introducing the initial disturbance and sensor errors at iteration 1

and 19, the template program resembles as follows.

int main(float errl, float err2, float dInit){
float x[20][2];
float k1=0.312,k2=0.049,u=0; //State feedback control action
float A1=1,A2=0,A3=-1,A4=1,B1=-1,B2=0.5; //Dynamics of plant
float x[0][0]=0,x[0][1]=3; //Initial fixed reference
x[0] [1]1=x[0] [1]+ dInit; //Adding Intial disturbance
u=-(k1*x [0] [0]+k2*x[0] [1]); //Controller code
x[1] [0]=A1%x[0] [0]+A2*x[0] [1]+u*B1; //Plant state at iteration 1
x[1] [1]=A3*x[0] [0] +A4*x[0] [1] +u*xB2;
x[1] [1]1=x[1] [1]+errl; //Sensor error is introduced
u=-(k1*x[18] [0]+k2*x [18] [1]);
x[19] [0]=A1*x[18] [0]+A2*x[18] [1]+u*B1;
x[191 [11=A3*x[18] [0]+A4*x[18] [1]+ux*B2;
x[19]1 [1]=x[19] [1]+err2; //Sensor error is introduced
assert (sqrt ((x[20] [0]1°2 + x[20][1]172))/sqrt((x[0][0]"2 +

x[0]1[1172))< 0.1); // 2-norm Exponential stability

o Reliability Assertion Generation The 2-norm exponential stability re-
quirement is added in the template program o;. Considering the 2"¢ norm,

the stability criterion presented in Equation 4.3 can be rewritten as follows.
$t+l2 < 62 X $t2 (45)

This non-linear exponential stability equation in terms of an assertion A
is embedded at the end of the code as presented in the template program
of the double integrator circuit. It may be noted that the static failure
analysis framework ProPFA is strictly limited to linear programs. Hence
the non linear equation is required to be approximated by a set of linear

equations in order to employ ProPFA. As we always start our analysis from
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a fix reference, the R.H.S. of Equation 4.5 becomes constant. For the double
integrator circuit shown in Figure 4.3 the stability equation reduces to the

following considering a fixed reference point (0, 3).
2[20][0]% + z[20][1]* < 0.1% x (0% + 3?) (4.6)

It may be noted that Equation 4.6 reduces to an equation of a circle for 2-
dimensional state vector. This non linear equation is then approximated by

a set of triangles as shown in Figure 4.4. Our implementation automatically

Linearize

)

r=€2%x (x[20][0]% + x[20][1]?)
Figure 4.4: Linearization of Stability Criterion

generates the linear constraints for the triangles. The linear equations for
each smaller triangular region are then inserted into the template program
as assertions and reliability is estimated. Application of the linearization in
a recursive manner for handling state spaces of higher dimension is currently

under investigation.

« Confidence Measure: Our notion of confidence in case of reliability anal-
ysis for control software is different from earlier notion as the question of
path coverage does not arise here. For control software implementation ex-
ponential number of program execution paths are not generated as we do not
consider loops. Nonetheless the linearization of the assertion leads to cover-
age loss for the original failure assertion. Accounting for this approximation,
we estimate the confidence considering percentage of error introduced in lin-

earization where the permissible percentage of error is user provided.

o Program Path Extraction: This phase is required only if the control
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system is a switched system. The reliability estimation procedure is ap-
plicable for both the sequential and state dependent switched control laws.
For switched control system the switching conditions among different con-
trollers are expressed using if-then-else constructs thus constituting mul-
tiple number of program execution path. Our failure estimation framework
extracts each program execution path at a time and computes success prob-
abilities which in turn are accumulated to estimate the reliability of the
switched control system. For sequential control systems, there is only one
program execution path as in the case of the double integrator circuit shown

in Figure 4.3.

« Reliability Estimation: Our failure estimation framework ProPFA is em-
ployed for estimating success probabilities of the generated template pro-
grams in presence of environmental uncertainty U. We generate success
predicates for each linearized region and estimate the reliability of that par-
ticular region using lattice point counting as discussed in Chapter 2. Then
the reliabilities of all regions are accumulated for estimating the overall reli-

ability of the control system in presence of errors.

4.1.3 Experimental Results

Detailed experimental results on the double integrator circuit in Figure 4.3 is
presented in this section. We have considered two different error profiles while
estimating the reliability. The semantics of the sensor error profile is presented
as discrete regions with associated probability values. For example, the error
profile ([-5, -2], 0.3; [-2, 2|, 0.4; [2, 5], 0.3) suggests that the error can originate
uniformly from the range [-5, -2] with probability 0.3, [-2, 2] with probability
0.4 and [2, 5] with probability 0.3 respectively. Given the maximum number of
errors allowed as 2 and for two different error profiles the failure probabilities are
estimated considering all possible iterations where the errors can be introduced.
The linearization errors present in the experimental results shown in Table 4.1
and Table 4.2 are considered to be 5% and 2% respectively. itrl and itr2 in Table
4.1 and Table 4.2 indicate that error 1 and 2 are introduced at ‘itrl’ and ‘itr2’

respectively.
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Error Profile: [-5, 5], 1

Confidence: 0.95

Itrl 1 1 1 1 1 1 1 1 1
Itr2 2 3 5 7 10 13 15 17 20
Rel 0.972683 0.95864 0.935859 0.978393 0.778407  0.957141  0.904232  0.704861  0.594173
Itrl 2 2 2 2 2 2 2 2 3
Itr2 3 5 7 10 13 15 17 20 5
Rel  0.948088 0.92471 0.966894  0.789643 0.957085  0.903799  0.703814  0.594172  0.916547
Itrl 3 3 3 3 3 3 5 5 5
Itr2 7 10 13 15 17 20 7 10 13
Rel  0.957978 0.797684  0.955678 0.902382 0.702066  0.594173  0.959877  0.793811  0.94948
Itrl 5 5 5 7 7 7 7 7 10
Itr2 15 17 20 10 13 15 17 20 13
Rel  0.896994  0.697053  0.590732 PAEPEIES 0.942938  0.890099  0.690519  0.582589  0.938061
Itrl 10 10 10 13 13 13 15 15 17
Itr2 15 17 20 15 17 20 17 20 20
Rel 0.855414  0.680234  0.564649 0.773702 0.651773  0.544503  0.612531  0.522203  0.49288
Error Profile: [-5, -2], 0.4; [-2, 2], 0.2; [2, 5], 0.4  Confidence: 0.95
Itrl 1 1 1 1 1 1 1 1 1
Itr2 2 3 5 7 10 13 15 17 20
Rel  0.922623 0.91862 0.915859 0.948497  0.798417 0.937231 0.883130  0.698486  0.575941
Itrl 2 2 2 2 2 2 2 2 3
Itr2 3 5 7 10 13 15 17 20 5
Rel  0.929480 0.91224 0.941668 0.751896 0.939570  0.891037  0.687038  0.582941  0.901657
Itrl 3 3 3 3 3 3 5 5 5
Itr2 7 10 13 15 17 20 7 10 13
Rel  0.935798 B GISEER 0.935678 0.880232 0.680206  0.65173  0.935987 0.789311  0.91448
Ttrl 5 5 5 7 7 7 7 7 10
Itr2 15 17 20 10 13 15 17 20 13
Rel  0.886964  0.679053  0.579072 0.735423 0.924238  0.878099  0.680519  0.552589  0.923861
Itrl 10 10 10 13 13 13 15 15 17
Itr2 15 17 20 15 17 20 17 20 20
Rel 0.835414  0.660234  0.574649 0.753702 0.625173  0.514503  0.601231 0.512203  0.49288

Table 4.1: Experimental results for Double Integrator with 5% Linearization Error
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Error Profile: [-5, 5], 1

Confidence: 0.98

Itrl 1 1 1 1 1 1 1 1 1
Itr2 2 3 5 7 10 13 15 17 20
Rel 0.953351 0.931525 0.890268 0.961587 0.758244 0.977501 0.884441 0.610007  0.462605
Itrl 2 2 2 2 2 2 2 2 3
Itr2 3 5 7 10 13 15 17 20 5
Rel 0.917366 0.874887 0.941194 0.774055 0.976258 0.884186 0.609309 0.462605 0.864732
Itrl 3 3 3 3 3 3 5 5 5
Itr2 7 10 13 15 17 20 7 10 13
Rel  0.926699 0.781894 0.974286  0.883506 0.608159  0.462605 0.929651 0.763874  0.97038
Itrl 5 5 5 7 7 7 7 7 10
Itr2 15 17 20 10 13 15 17 20 13
Rel 0.880126 0.605044 0.459419  0.69943  0.969102 0.875716  0.601077  0.452351  0.952183
Itrl 10 10 10 13 13 13 15 15 17
Itr2 15 17 20 15 17 20 17 20 20
Rel 0.823984 0.594877 0.438547 0.678276  0.565081  0.453649 0.527496 0.450372  0.430046
Error Profile: [-5, -2], 0.4; [-2, 2], 0.2; [2, 5] , 0.4  Confidence: 0.98
Itrl 1 1 1 1 1 1 1 1 1
Itr2 2 3 5 7 10 13 15 17 20
Rel 0.922623  0.91862  0.915859 0.948497 0.798417 0.937231 0.883130 0.698486  0.575941
Itrl 2 2 2 2 2 2 2 2 3
Itr2 3 5 7 10 13 15 17 20 5
Rel  0.929480 0.91224 0.941668 0.751896  0.939570 0.891037 0.687038 0.582941  0.901657
Itrl 3 3 3 3 3 3 5 5 5
Itr2 7 10 13 15 17 20 7 10 13
Rel 0.935798 0.787684 0.935678  0.880232 0.680206  0.65173  0.935987 0.789311  0.91448
Itrl 5 5 5 7 7 7 7 7 10
Itr2 15 17 20 10 13 15 17 20 13
Rel 0.886964 0.679053 0.579072  0.735423 0.924238 0.878099  0.680519  0.552589  0.923861
Itrl 10 10 10 13 13 13 15 15 17
Itr2 15 17 20 15 17 20 17 20 20
Rel 0.835414 0.660234 0.574649 0.753702 0.625173 0.514503 0.601231 0.512203  0.49288

Table 4.2: Experimental results for Double Integrator with 2% Linearization Error
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The tabulated results can be interpreted as follows. Let us consider that the
highlighted text in Table 4.1. It indicates that with errors injected in two specific
iterations (7* and 10""), the overall reliability of the control loop for error profile
[-5, 5], 1 is 0.754238. Again, for error profile [-5, -2], 0.4; [-2, 2], 0.2; [2, 5],
0.4 the reliability is estimated as 0.787684 in case two sensor errors are injected
at iteration 3 and 10 (2nd highlighted text in Table 4.1). The permissible error
introduced during linearization is 5% in both cases. Hence, the confidence measure
is 0.95. Table 4.2 provides reliability results for the same system and same set of

error profiles with confidence 0.98.

4.2 Safety Analysis of Embedded Control Soft-

ware Systems

In this section, we have analyzed safety requirements of embedded control soft-
ware. Safety is a critical factor in the control system construction. As it is literally
impossible to be confident about software correctness, increasing use of software
controlling the interactions among components in control system raises issues in
safety aspect. Also, design of these systems introduces new types of human errors
while interacting with or within highly automated systems. Hence, safety and risk
analysis become necessary and essential part of such systems’ construction. Two
distinct research attempts have been made so far for fast and accurate analysis
of safety critical systems [LMPO06], one of them is failure logic modeling. Fault
Propagation and Transformation Notation (FPTN) [FMNP94] is one of the first
developments in failure logic modeling for generation and propagation of compo-
nent failures in the system. However error and system model were separate in
this case. To overcome this issue, Fault Propagation and Transformation Calculus
(FPTC) [Wal05] was proposed which linked between the error model and sys-
tem architectural model while maintaining all dependencies. Failure expressions
were directly embedded within the components and propagation of failure was
described. Probabilistic analysis can also be performed in an extension [GPMO09]
where probability values can be provided along with the expressions. Component

Fault Trees (CFTs) is a graphical representation of the failure logic of compo-
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nents building on the specification used by FPTN. Automated fault tree analysis
is provided in [WS78]; however it still required manual intervention in fault tree
construction. A few more comprehensive approaches have also been made which
automate the synthesis of the analysis model such as fault trees and then analysis
of these models. Another strand of research relies on Failure Injection for automat-
ically generating a list of failure configurations that are significant from the safety
perspective. This method takes as input a formal design model and extends the
intended behavior captured in the model with possible deviations monitored by an-
alysts under conditions of failure i.e. failure modes [JHO05]. This approach exploits
exhaustive verification capabilities of model checking and provides implicit guar-
antee of correctness of the results with respect to the design model. However,the
shortcoming of the method is the reliance on existence of formal, executable design
models.

Nonetheless, we attempt to provide a source code based safety analysis of em-
bedded control software systems. In order to ensure safety, the requirements can
be expressed in terms of safety assertions embedded into the execution logic spec-
ification presented in terms of an imperative program in C-like syntax. Failure of
these assertions leads to failure of the whole system that might endanger human
life or cause extensive environmental damage. We aim to compute the failure prob-
ability of such behavioral logic to determine the risk associated with the system
by employing our failure estimation framework. Such notion of risk is captured in

the definition of safety factor is stated as follows.

Definition 10. System Safety Factor: Safety Factor is defined as the probability
with which the system under consideration satisfy all the safety requirements irrespective

of whether or not the system conforms to its specification. 0

It may be noted that we are only considering safety analysis at a particular time
instance thus ignoring the feedback connection. Our failure analysis framework
ProPFA can be seamlessly employed for estimating the System Safety Factor. The
glue logic of the system under consideration is presented in terms of a C program
(0) annotated with safety assertions. After extracting one program execution path
(m;) from o, we compute success probability of that particular path as reported

in Chapter 2. Eventually, we extract all program execution paths and enumerate
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the success probabilities in order to estimate the System Safety Factor. In case
all program execution paths are not explored, the imprecision associated with the

Safety factor is reported as a confidence measure.

4.2.1 Case Studies

In this section we demonstrate promising results obtained for benchmarks from
embedded control software domain, namely non-redundant version of Fly-by-wire
(FBW) [Sut68] from avionics domain and Automatic Cruise Control System (ACC)

[VEO03] from automotive domain.

o Fly-by-Wire (FBW): Fly-by-wire (FBW) [Sut68] replaces the conven-
tional manual flight controls of an aircraft with electronic interfaces thus
reducing weight and fuel consumption. It also allows to exploit multiple
aircraft configurations which increases aerodynamic efficiency and provides
better overall performance. The flight control commands (for Roll, Pitch
and Yaw) are converted to electronic signals transmitted by wires (hence the
fly-by-wire term), and flight control computers determine the exact control
commands for the actuators at each control surface of the aircraft. However,
this may result in a reduced natural stability, with the aircraft becoming un-
stable over part of the range of speed and altitude conditions (the flight en-
velope). FBW systems overcome this by providing high-integrity automatic
stabilization of the aircraft to compensate for the loss of natural stability. All
these factors provide the pilot with good control and handling characteristics

over the whole flight envelope and under all loading conditions.

The embedded control software (~1KLoC) for non redundant FBW inter-
acts with several physical components. It periodically samples data from a
set of sensors and periodically activates a set of actuators (stabilizers, rud-
der, elevators etc) inside a control loop. We have considered the ranges of
input variables according to the standard specified by Aviation Authorities
for the Airbus A320 long haul aircraft. Since we do not have the actual A320
FBW software controller implementation, we use the input specifications for
A320 FBW for a generic FBW software specification. These air planes spend
their maximum cruising time within the altitude range [30000 —40000]ft. At
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cruise altitude, the speed of the airplane varies between [520 — 550]mph, the
air density varies between [0.1841 —0.03996]kg/m? and sound velocity is con-
sidered as 659.8mph. Airbus A320 surface area is 248 m?. The input range
for sensors which sense the different orientations of the flight can be in the
+90° range. The actual pitch angle is only allowed to vary within the range
[0° — 15°]. We have embedded safety assertions which are required as per
recommended standard to model the environmental scenario in which dif-
ferent components execute successfully. Few safety assertions are presented

subsequently.

1. Mach number (Ratio of aircraft speed by velocity of sound) should
remain in the range [0.0 — 0.84]. After 0.84, subsonic aircrafts generate

shock waves permanently damaging wings and tail.

2. Angle of Attack (AoA) is limited by 20°. Beyond 20°, the downstream
software component fails to activate the lower level controller that per-

forms the final AoA actuation.

3. Load factor safe range is provided to be [0.9—2.5]. Excessive load factor
is avoided because of the possibility to exceed the structural strength of
the aircraft and possibly leading to engine failure under stress. Hence

this assertion limits the activation of several components.

4. The pitch angle is only allowed to vary in the range of [0° — 15°] to

avoid aircraft spin.

We have considered a behavioral logic of the system which includes these
constraints in the form of safety assertions. Our baseline system acts within
the perfect operational envelope as described previously. For this system
we have considered that the pilot provides pitch angle commands within
[0° — 15°] with probability 1. If this ideal environment scenario changes, by
our lightweight analysis technique, we can compute the resulting change in
safety factor as some of the components may not work successfully due to
violation of assertions. We have considered the following modifications in
standard operational profile. This modified profiles are presented in Table
4.3.
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1. Let the pilot provide the pitch angle within the specified practical range
with probability 0.999. Hence, with probability 0.001, the pilot can
accidentally feed any pitch angle within the range [(—90)° — (—1)°] and
[16° — 90°]. Using our framework, such human error factors can be
naturally captured as probability mass functions distributed uniformly

in two partitions of the entire operating region.

2. For the second scenario, let the maximum velocity of the aircraft be
555mph. It will violate the assertion that Mach number should not

exceed 0.84 for few cases.

« Adaptive Cruise Control (ACC): Adaptive Cruise Control (ACC) [SYM97],
a driver support system, controls both speed and headway of the vehicle,
slowing the vehicle down when presented with an obstacle and restoring tar-
get speed when the obstacle is removed. A typical Automatic Cruise Control
(ACC) System consists of a radar, a throttle and a braking unit as its primary
components. If a slower moving vehicle is detected by the radar, it slows the
vehicle down and controls the time gap between the vehicle and the forward
lead vehicle. If the system does not detect any forward vehicle it accelerates
the vehicle to its set cruise control speed. This operation allows the vehicle
to autonomously slow down and speed up with traffic without intervention
from the driver. We have considered certain failure scenarios of this system

that constitute the safety assertions in the behavioral description.

1. ACC can only operate if the vehicle speed is above 12 meters per second

(m/s) and current distance between cars is greater than 100 meters (m).
2. ACC should only be activated when safe distance is greater than 10m.

3. Though the throttle unit accelerates the speed of the car, the expected

speed is not permitted to exceed safe speed.

The results obtained for these cases are presented in Table 4.3. We have consid-
ered failure assertions as the safety assertions of component invocation, i.e. every
component has a single assertion specifying the fully reliable operational region.
From safety perspective, the complement region is considered fully unreliable. In

all the above examples, complete path coverage could be achieved.
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Program Operational Profiles (op) LOC  #Assertion Safety Factor
FBW Recommended op of Airbus ~ 1000 21 1.0000000
A320 [Sut68] in cruising altitude
FBW Recommended op [Sut68], but ~ 1000 21 0.9780000
velocity range [520, 555|mph
FBW  Recommended op [Sut68], but pitch ~ 1000 21 0.9981000
angle between [—90°, —1°] with
Prob. 0.001, between [0°, 15°]
with Prob. 0.999
ACC Recommended op ~ 200 7 0.9723000

Table 4.3: Evaluation of ProPFA on control softwares

4.3 Summary

This chapter provides a formal approach towards probabilistic formal analysis of

control software implementations and a detailed investigation on the behavior of

a control system in the face of bounded environmental uncertainty. It also ad-

dresses the problem of safety analysis for embedded control softwares and presents

promising results obtained for non-redundant version of Fly-by-wire (FBW) from

avionics domain and Automatic Cruise Control (ACC) system from automotive

domain.
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Chapter 5
Conclusion and Future Scope

With increasingly complex and costly implementation methods for software sys-
tems, the current software engineering practice of ‘build then test’ is becoming
unaffordable. Establishing a minimum reliability guarantee at early design stages
thus becomes relevant. In this context, estimation of failure probability assumes
major significance. In this thesis we propose a framework for failure estimation
when provided with the behavioral description of software systems in terms of
imperative programs. We do not aim at estimating exact reliability figures, rather
we provide an overestimation of failures so that a provable lower bound on the
probability with which the system can execute successfully can be established. A
summary of the main contributions of thesis followed by scope of future research

are discussed in the subsequent sections.

5.1 Contributions

The major contributions of the thesis are summarized below.

o We present a formal approach towards failure probability estimation of soft-
ware systems presented in terms of an imperative program in C-like syntax
in a specific environment. Unlike other established reliability analysis meth-
ods present in literature, the proposed approach utilizes invariant relations
to reduce program execution paths in presence of simple loops with no fail-

ure assertions thus resulting in improved scalability. The imprecision in the
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estimation process due to the incompleteness of the synthesized invariant as
well as time and memory bound is captured as a confidence measure. An
automatic path based tool flow ProPFA (Probabilistic Path-based Failure
Analyzer) is also designed and experiments are carried out to estimate fail-
ure probabilities of numerical programs with well-known failure conditions

converted into failure assertions.

o We have demonstrated a provable Point reliability estimation and valida-
tion approach for component based software systems utilizing the proposed
framework. Additionally, it takes into account the component level testing
statistics to provide a scalable semi-formal estimate of reliability. For reli-
ability validation, a greedy strategy is developed which tries to validate a
minimum reliability guarantee within the specified time and memory bound.

Experimental results are presented over few examples from software systems.

o A formal approach towards the risk estimation of a control system imple-
mentation in C-syntax for an uncertain noisy environment is also presented.
By utilizing our proposed framework, we have demonstrated that the failure
probability of the stability criterion can be estimated given the implementa-
tion of the controller plant. This method is also applicable in the domain of

control systems.

The work addressed in this thesis proposes a new framework for estimating prov-
able failure probability leveraging program analysis techniques. Further extensions

that are possible are listed in the next section.

5.2 Future Scope

The research presented in this thesis can be extended in various directions. The

key areas of extension are listed as follows.

o In our failure estimation framework, following are the constraints on environ-
mental variables - 1) the variables are independent and 2) the variables are
uniformly distributed in particular ranges. Other complex distributions are

discretized into smaller intervals where the distributions can be considered as
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uniform. Precise failure estimation is possible only in case the discrete inter-
vals are narrow enough that avoid huge under-approximation. Again execut-
ing the framework on small discrete intervals increases analysis time. In this
research work, the discretization is solely provided by the user. Automated
generation of these intervals with optimized granularity of discretization is an
immediate extension. Also, the distribution of environmental variables are
always not known. Future scope entails handling the imprecise probabilistic

inputs for independent as well as dependent environmental variables.

o Our estimation framework deals with programs with simple data structures.
Extending these ideas over a complete full-fledged tool-flow for failure esti-

mation of programs with complex data structures is future work.

o We only reduce the number of program execution paths for simple loops
without failure assertions. Else, we unroll the loop according to the user
provided unrolling factor which again generates huge number of program
execution paths for the analysis procedure. In future, more sophisticated
failure estimation approach can be established for handling assertions inside

loops using techniques like probabilistic abstract interpretation.

There are still more than a few stones left unturned!
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