
A Two-Phase Approach for
Conditional Floating-Point Verification

Debasmita Lohar1 (B), Clothilde Jeangoudoux1,
Joshua Sobel2, Eva Darulova1 , and Maria Christakis1

1 MPI-SWS, Saarland Informatics Campus, Saarbrücken and Kaiserslautern,
Germany, {dlohar,jeangoudoux,eva,maria}@mpi-sws.org

2 University of Rochester, Rochester, USA, jsobel3@u.rochester.edu

Abstract. Tools that automatically prove the absence or detect the
presence of large floating-point roundoff errors or the special values NaN
and Infinity greatly help developers to reason about the unintuitive nature
of floating-point arithmetic. We show that state-of-the-art tools, however,
support or provide non-trivial results only for relatively short programs.
We propose a framework for combining different static and dynamic
analyses that allows to increase their reach beyond what they can do
individually. Furthermore, we show how adaptations of existing dynamic
and static techniques effectively trade some soundness guarantees for
increased scalability, providing conditional verification of floating-point
kernels in realistic programs.

1 Introduction

Floating-point arithmetic is widely used across many domains, including machine
learning, scientific computing, embedded systems, and the Internet of Things.
Floating-point computations resemble real-valued arithmetic, but provide only
finite precision, which commits roundoff errors at potentially every operation.
While these errors are individually small, they propagate through an application
and can make its results meaningless [47]. In addition, floating-point arithmetic
features special values such as not-a-number (NaN) and Infinity [48]. As a result,
these computations are very challenging for developers to reason about and
debug manually. There is, therefore, a clear need for automated verification and
debugging techniques for such computations.

Unfortunately, today’s techniques do not handle realistic floating-point pro-
grams well. Consider for example a program that simulates the interaction of
several bodies under gravity. We took a C implementation of this N-body problem
from Rosetta Code [5], which takes as input the masses, positions and velocities
of—in our case—three bodies, and shows their evolution over a number of time-
steps. The entire program is moderately-sized with 108 lines of code. Suppose
that we want to verify the absence or presence of special floating values and
cancellation (i.e. large roundoff) errors in this program. None of the currently
available floating-point analysis tools is able to do this.

http://orcid.org/0000-0001-8639-4116
http://orcid.org/0000-0002-6848-3163

2 D. Lohar et al.

1 int main(int argc, char* argv[]) {... // Reads masses, positions and velocities

2 for(int i=0; i<timeSteps; i++) { simulate(mass, pos, v); ...}

3 }

4 void simulate() { compute_accelerations(mass, pos); ...}

5 void compute_accelerations(double mass[], vector pos[]){

6 for(int i=0;i<bodies;i++){ ...

7 for(int j=0;j<bodies;j++) {if(i!=j) {

8 acc[i] = numerical_kernel(mass[j], pos[i], pos[j], acc[i]);}}}}

9 vector numerical_kernel(double mass, vector pos_i, vector pos_j, vector acc) {

10 return addVectors(acc, scaleVector(g*mass/pow(mod(subtractVectors(pos_i,pos_j)),3),

subtractVectors(pos_j,pos_i))); // compute acceleration

11 }

Listing 1.1. Snippet of Rosetta code N-body simulation

State-of-the-art static roundoff-error analysis tools [33,31,30,60,65,72] are in
principle capable of proving the absence of both special values and large roundoff
errors by computing an abstraction of the possible behaviors. However, they work
only on small programs, mostly consisting of a single function, and thus do not
work for our N-body example. The static tools that do scale [11,63,43] suffer
from large over-approximations due to abstractions and thus effectively cannot
prove the absence of issues either. Bounded model checking [52] or SMT decision
procedures [25] perform exact bit-precise reasoning, but do not scale enough due
to the complexity of floating-point arithmetic.

On the other hand, there exist dynamic analyses that search for concrete inputs
proving the presence of Infinities [38], NaNs or cancellation errors [10,21,78]. We
could not apply any of these tools on our example, to a large part because they, too,
have been designed for relatively small programs. More guided techniques such as
symbolic execution [57] rely on a back-end SMT solver, for which floating-point
theories have very limited scalability.

We evaluated representative available tools on a new collection of floating-
point benchmarks and get similar results for most of them (Section 5).

We observed that often only a relatively small part of a program performs
complex numerical computations—we call these parts the numerical kernels.
Existing state-of-the-art floating-point analyzers can be applied to these kernels,
provided that one can supply a precondition that bounds the kernel’s input ranges
(their minimum and maximum values). Obtaining such preconditions manually is
challenging, since the kernels are usually nested in loops as functions. Listing 1.1
shows a subset of the N-body example; the numerical kernel that we identified is
on line 9, nested behind several for-loops and function calls.

Based on this observation, we propose a two-phase analysis that combines
different program analyses to conditionally verify the absence of special values
and cancellation errors in numerical kernels ‘concealed’ in large programs. First,
we employ a scalable program analysis to infer the ranges of a kernel’s inputs in

A Two-Phase Approach for Conditional Floating-Point Verification 3

the context of the containing application. In the second phase a different program
analysis assumes these ranges to verify the kernels.

The main insight behind this combination is that the first scalable analysis
does not need to perform sophisticated floating-point reasoning; the domain
specifications required for the second numerical analysis need to only capture
input ranges of variables.

The main challenge in our two-phase analysis is the first phase where our
objective is to infer the ranges of the kernel inputs automatically. We first
attempt to verify the numerical kernels fully soundly. Hence, we utilize abstract
interpretation to infer sound ranges of kernel inputs. In case it is unable to infer
useful (finite) ranges for the kernels, we propose to adapt existing blackbox and
greybox fuzzing techniques [12], and evaluate them in their ability to produce
large kernel input ranges capturing as many feasible inputs as possible.

After inferring the kernel ranges, the second phase utilizes a slightly adapted
existing static and sound roundoff error analysis [30] to verify the kernels. In
case this analysis produces warnings for special values, we additionally utilize
SMT-based bounded model-checking [52] to check for spurious warnings.

Although there is a large body of work on combining different program
analyses, our goal of analyzing real-world applications to verify their numerical
kernels is novel. Our combination is specifically tailored to this setting, by
considering the intricacies of floating-point arithmetic and the limitations of
today’s analysis techniques in reasoning about them.

Using a dynamic analysis in the first phase means that we are only able to
infer approximations of the kernel input ranges. Consequently, we can verify
the kernels only conditionally, because the verification is performed under the
assumption that the input-domain specifications precisely describe possible values
of the kernel inputs. Thus, we take a practical standpoint and relax the soundness
guarantees in favor of wider applicability of today’s static floating-point roundoff-
error verification techniques.

Our evaluation shows that for 16 out of 24 kernels, this approach is able to
verify that no special floating-point values occur; for 3 of those kernels, verification
is sound. For 14 kernels, we additionally show the absence of cancellation errors
that are a main cause of large roundoff errors.

Contributions To summarize, our paper makes the following contributions:

a) a two-phase framework that combines dynamic and static analyses to condi-
tionally verify the absence of floating-point special values and large roundoff
errors in kernels,

b) a novel guided blackbox fuzzing technique to infer kernel ranges, implemented
in an open-source prototype tool called Blossom, and

c) an evaluation on a new benchmark set of mid-size numerical programs.

Our benchmarks, the tool Blossom as well as scripts of all of our experiments are
available at https://github.com/dlohar/blossom.

https://github.com/dlohar/blossom

4 D. Lohar et al.

Whole Program Analyzer

Abstract Interpretation
program P +

kernels K +

input bounds I

[−∞, + ∞] kernels K +

ranges R

Numerical Kernel Analyzer

Static Program Analysis

, NaN

warnings
∞

trace / warnings

+

large round-off
Blackbox Fuzzing

Guided Blackbox
Fuzzing

Greybox Fuzzing

Static Program Analysis

Fig. 1. Overview of our approach

2 A Two-Phase Approach

Figure 1 shows an overview of our two-phase approach that strives to increase
the reach of existing floating-point analyses of floating-point numerical kernels.
Our key observation is that such kernels appear in real-world applications from a
variety of domains, but they are often ‘hidden’ behind several function calls and
other non-numerical code that the round-off analyzers cannot handle. The first
phase infers bounds on the input variables of a set of numerical kernels K that
have been identified by a user in a program P. In the second phase, we utilize
these ranges to (conditionally) verify the kernels, i.e. to (conditionally) prove the
absence of special values and large roundoff errors.

An alternative strategy would be to identify the largest kernel input ranges
for which correctness can be guaranteed. However, even if one could infer such
preconditions (we are not aware of a tool that performs such a backward analysis),
our techniques for the first phase would still be needed to determine whether the
program can execute the kernels on inputs outside of the safe ranges.

2.1 First Phase: Whole Program Analysis

In the first phase we have a whole program analyzer that, starting from the
program inputs constrained by I, infers bounds R on the kernel inputs auto-
matically. These bounds are crucial, as the presence of cancellations and special
values directly depends on the ranges of possible values; an unbounded input
range will, in general, also lead to unbounded roundoff errors and special values.

To obtain the kernel ranges, we need to analyze the entire program. In
general, it is infeasible to compute the exact ranges, so that we want to approxi-
mate them. We propose to first use a sound static analysis, which computes an
over-approximation of the true ranges. They thus cover all feasible inputs, but
additionally also spurious ones, so we want these ranges to be as tight (small) as
possible. If the abstractions necessarily performed by the static analyzer become
prohibitively large, we propose to use dynamic analysis to compute an unsound
approximation of the kernel ranges. These ranges should be as wide as possible
to capture as many concrete executions as possible.

A Two-Phase Approach for Conditional Floating-Point Verification 5

Sound Static Analysis We choose abstract interpretation [26] and specifically the
industry-strength analyzer Astrée [63] to infer a sound over-approximation of the
kernel ranges, as Astrée scales for large programs with complex code and data
structures and comes with a variety of abstract domains.

The choice of the abstract domain in Astrée is, in general, a trade-off between
the amount of over-approximation and the analysis running time. The interval
domain abstracts a set of concrete variable values by their lower and upper
bounds: [x, x] := {x | x ≤ x ≤ x}. While operations on interval arithmetic [64]
are efficient, intervals cannot capture correlations between variables and therefore
over-approximate the real behavior (e.g. x − x 6= 0 in interval arithmetic).
Nonetheless, for our benchmarks we have not observed any noticeable difference
in the results with more sophisticated domains (e.g. octagon). This is likely due
to our benchmarks having many nonlinear operations. Hence, we choose the
interval domain as the numerical abstract domain for our purpose.

Dynamic Analysis Fuzzing finds inputs that demonstrate certain (unwanted)
behavior. We propose to fuzz a program and at the same time monitor the kernel
inputs to record the lower and upper bounds seen during concrete executions.

We instrument each user-specified kernel in the program with a kernel monitor
that keeps track of the smallest and largest value seen for each kernel input.
We repeatedly execute the instrumented program and report the minimum and
maximum values seen for each kernel input over all executions. This approach
crucially depends on the choice of program inputs that are used for fuzzing. We
propose and experimentally compare blackbox, guided blackbox, and directed
greybox fuzzing [12] as methods for input selection in Section 6.

Blackbox fuzzing is a naive but effective technique in many testing situations.
In our setting, the blackbox fuzzer randomly draws inputs from the program
ranges I, i.e. without any reference to the internal structure of the program.

We further propose guided blackbox fuzzing that is guided toward enlarging
the kernel input ranges. For this, the program input generator records those
inputs that have widened the kernel ranges, and randomly generates new inputs
that are within a certain (small) distance from these, in the hope that the new
inputs would enlarge the monitored ranges even further.

While blackbox techniques are straightforward to implement, they do not take
into account the program structure. We thus evaluate an adaptation of directed
greybox fuzzing, implemented in the the state-of-the-art tool AFLGo [12] that can
be directed toward specific program locations, while exploring as many different
paths in the program as possible. We first fuzz the program to obtain an initial
estimate for the kernel input ranges with AFLGo (targeting the kernel). Then,
we employ AFLGo in a refinement loop that iteratively attempts to widen the
currently seen kernel input ranges. We instrument the kernels with conditional
statements that check whether a kernel input is outside of the current kernel
range. We use this conditional statement as a target for AFLGo, effectively
directing it to find kernel inputs that are outside of the current estimate. If
AFLGo finds a program input that widens the current kernel input range, we
update it accordingly and iterate the process until a user-defined timeout.

6 D. Lohar et al.

2.2 Second Phase: Numerical Kernel Analysis

With the ranges (R) inferred in the first phase, we analyze the user-identified
numerical kernels (K) in the second phase with a static analyzer. Our objective
in the second phase is to either show the absence of special floating-point values
and large roundoff errors in a kernel or to generate warnings for the potential
presence of such values.

We use the sound floating-point roundoff analysis tool Daisy [30], which
automatically proves the absence of special values and computes an absolute
error bound for each kernel output. When Daisy generates a warning that special
values can potentially occur, we use a SAT/SMT-based model checker that
performs exact floating-point reasoning and that can identify spurious warnings.

By itself, the error bound on the kernel output is not particularly helpful,
however, since we do not know how this error propagates to the end of the
program (although there exist scalable analyses that potentially can compute
this information, e.g. [61]). That said, for many numerical applications the exact
error bound is not important, since the algorithm itself is already approximate.
For these applications, it is thus sufficient if we can show that the roundoff
errors are not too large. We thus modify Daisy to report a warning when it
detects a possible cancellation, i.e. when an arithmetic operation increases the
relative error significantly (e.g. when two values that are close in magnitude get
subtracted [42]). Additionally, Daisy includes an optimization procedure that can
improve the accuracy of the kernels by rewriting the arithmetic expressions to
commit smaller roundoff errors. We provide more details in Section 4.

2.3 Soundness Guarantees

To summarize, using the extended Daisy analysis, we can conditionally verify
that kernels do not result in any NaN or Infinity, and that they do not commit
cancellation errors, i.e. lead to large roundoff errors. When the kernel input ranges
are computed soundly using abstract interpretation (e.g. Astrée), our verification
is conditional in that we only verify the absence of cancellations for the kernels,
but not for the rest of the program.

When the ranges are computed using dynamic analysis in the first phase,
they include more concrete values than the fuzzer witnessed. Values between the
lower and upper bound are not necessarily observed by the fuzzer, and are also
not necessarily feasible. If one were to consider only values witnessed at runtime,
then it would be possible to analyze kernels for individual traces, although this
would be quite expensive [10]. However, if we can soundly show that no special
values or large roundoff errors (cancellations) occur inside a kernel for a given
input range, we have shown this for more executions than can be explored by
dynamic testing in general (since there are usually too many floating-point values
to explore exhaustively). Unlike for a NaN or Infinity that are obvious to detect,
cancellation cannot, in general, be detected by inspecting the computed results
and thus our combination is valuable.

A Two-Phase Approach for Conditional Floating-Point Verification 7

3 First Phase: Whole Program Analysis

Abstract Interpretation with Astrée We utilize Astrée as it scales for large C
programs with complex code and data structures. We add wrapper functions
to provide bounds for global variables, since Astrée does not assume ranges
for global variables directly. We further annotate the kernels K with Astrée’s
__ASTREE_log_vars() construct. This construct records the range information that
Astrée logs about the kernel inputs at the entry of the kernels.

Note that the analysis of Astrée can be extensively parameterized with the
knowledge of the program under analysis. Although this makes the analysis even
more precise, it requires vast manual effort and knowledge of the intricacies of
the program. To avoid this, we parameterize Astrée as generically as possible.
We only use semantic loop unrolling until a defined loop bound to reduce the
over-approximation in the analysis for all benchmarks.

Blackbox Fuzzing with Blossom We implement our novel blackbox fuzzing for ker-
nel range computation in a tool we call Blossom. Blossom works by instrumenting
the program to be analyzed. Blossom is implemented as an LLVM pass and works
on C, C++, and Rust input programs with complex programming constructs
and data types (and would work for any programming language that compiles to
LLVM). Blossom takes as input the program P , a configuration file that specifies
the ranges of program inputs, the fuzzing technique that we want to execute
(standard or guided blackbox), and a timeout. The LLVM pass automatically
instruments P by inserting code that performs the indicated fuzzing process until
the specified timeout, and records the ranges of kernel inputs.

In order to perform vanilla blackbox fuzzing, the code is instrumented with an
input generator that utilizes the srand() function with distinctive seeds to randomly
generate values of program inputs from the set of input bounds I. This process
is continued until the specified timeout.

Guided Blackbox Fuzzing with Blossom Algorithm 1 shows our guided blackbox
fuzzing algorithm for generating program inputs to maximize kernel ranges. The
algorithm is also implemented via LLVM-pass instrumentation in Blossom.

The inputs to Algorithm 1 are the program P with an identified set of kernels
K, a set of n program input ranges (I), and a timeout (T). The algorithm is also
parameterized by the number of mutations m and a constant c that determines
the neighborhood radii for all program inputs from which mutants (new program
inputs) are drawn. The algorithm returns a set of kernel ranges [{Rlo}, {Rhi}]
(line 16). The goal is to compute the interval [{Rlo}, {Rhi}] as wide as possible.

The algorithm keeps an input queue Q, which stores program inputs on which
the program is to be executed. If Q is empty, m new random inputs taken from
the program input ranges I are added to it (line 6–7). If Q is not empty, the
algorithm first dequeues one valuation of all the program inputs {v1, · · · , vn}
from Q (line 9), and executes the program P on these program inputs. During
the execution of the program, the kernel monitor checks the kernel inputs and
updates the kernel ranges as it is done in vanilla blackbox fuzzing (line 10). If the

8 D. Lohar et al.

Algorithm 1 Guided Blackbox Fuzzing
1: procedure guided-blackbox(P, I, K, T , m, c)
2: Q← φ, {Rlo} ={DBL_MAX}, {Rhi} ={DBL_MIN}
3: {r1, · · · , rn} ← computeRadii(I, c) . generates mutation radii
4: while T 6= 0 do
5: if Q == φ then
6: for i from 1 to m do
7: Q← enqueue(generateRandomInput(I)) . generates random inputs
8: else
9: {v1, · · · , vn} ← dequeue(Q)
10: [{Rlo}, {Rhi}]← executeAndmonitorKernels(K)
11: if (kernelRangeUpdated([{Rlo}, {Rhi}])) then
12: for i from 1 to m− 1 do
13: {d1, · · · , dn} ← mutate(v1 ∓ r1, · · · , vn ∓ rn)
14: Q← enqueue({d1, · · · , dn})
15: Q← enqueue(generateRandomInput(I)) . avoids local max/min
16: return [{Rlo}, {Rhi}] . returns kernel input ranges

kernel ranges were updated, i.e. we found an input that led to the kernel input
being outside of the currently known range, we generate m− 1 mutants from a
program input {v1, · · · , vn} by randomly drawing inputs from its neighborhood
v1 ∓ r1, · · · , vn ∓ rn and add them to the queue (line 12–14). (We draw mutants
randomly from the neighborhood to reduce the possibility of duplicate program
inputs.) The neighborhood, i.e. maximal distance of a mutant to the original
program input, is defined by the neighborhood radii {r1, · · · , rn} (computed
once on line 3) that depend on the width of each input range. Effectively, if an
input range is large, then we will draw mutants from a larger neighborhood as
well. This step enables to search in the neighborhood of the inputs that enlarged
the ranges of the kernels recently. Then, we generate one random input for all
variables in the whole input range (line 15). This step ensures that we do not
get stuck in a local maximum or minimum. The whole process is repeated until
timeout T .

4 Second Phase: Static Analysis with Daisy and CBMC

Next, we use the computed kernel ranges R as kernel input specifications (pre-
conditions) and adapt the state-of-the-art roundoff-error analyzer Daisy [30] to
verify the absence of cancellation errors and special float values. The translation
of kernels and the precondition annotation to Daisy’s input language in Scala is
currently done manually, but could be automated in the future.

Daisy’s core roundoff-error analysis performs a forward dataflow analysis. It
computes ranges and worst-case absolute error bounds for each intermediate arith-
metic (abstract syntax tree) expression using the interval and affine arithmetic
abstract domains. As part of this analysis, it checks for overflows and invalid

A Two-Phase Approach for Conditional Floating-Point Verification 9

expressions that could lead to NaN values, as their absence is a prerequisite for a
meaningful roundoff-error computation.

We extend Daisy to check at every intermediate expression for a possible
cancellation, using the ranges and absolute error bounds that Daisy computes
by default. At each binary arithmetic operation, we compare the relative errors
of the operands with the relative error of the binary operation result. If the
relative error increases more than a given factor, we report an error. We compute
the relative error for an intermediate expression x as the ratio of its worst-case
absolute error bound divided by the smallest value that the range of x contains.
When the range of x ([x]) contains zero, we divide instead by some small constant
c, ∆x

max(c,min([x])) , to make relative errors always well-defined. While this does not
compute a sound bound on the relative error, this is not needed for our purpose,
since we are only interested in a relative comparison.

With this extension, we can prove for each kernel and the specified kernel
input ranges, that cancellation and special values do not occur (but we cannot
prove their presence). When Daisy cannot show this, it issues a warning with
the possibly problematic intermediate expression. Spurious warnings for special
values can be checked with a tool that performs exact reasoning, e.g. CBMC [52],
and which reports a counterexample trace to the user who can use this trace to
confirm whether the warning is genuine and if so, for debugging.

Optimizing the Kernels Daisy furthermore provides a rewriting optimization that
finds an ordering of an arithmetic expression for which it can show a smaller
(absolute) roundoff error [32]. The rewriting relies on the fact that floating-point
arithmetic is not associative and distributive and hence different evaluation
orders commit errors of different magnitudes. Daisy’s algorithm uses real-valued
identities such as associativity and distributivity to rewrite the expression. Using
this optimization, we can thus locally improve the accuracy of the numerical
kernels.

5 State of the Art on Real-World Programs

We collected a new set of real-world numerical programs from different application
domains, as existing floating-point benchmark sets [29] cover kernels only. We
first report on our experiments using existing representative state-of-the-art tools
on these benchmarks, before evaluating our approach in Section 6.

Benchmarks All our benchmark programs are existing programs collected online
from a variety of domains such as scientific computing simulations (nbody, pendulum,
lulesh, reactor, molecular), physics algorithms (fbench, arclength), numerical methods
(linpack) and machine learning (linearSVC). Table 1 provides an overview of the
size and complexity of our benchmarks, as well as the number and arithmetic
complexity of the kernels that we chose for verification. We also count the number
of trigonometric operations (implemented in library functions) in the kernels,
and the ‘depth’ column shows the number of function calls needed to reach the
kernels from program entry.

10 D. Lohar et al.

benchmark lang. LOC #in. #func. #loops
kernels

#arith op. #trig. op. depth

arclength [68] C 31 1 1 2 1 20 5 1
linearSVC [8] C 32 4 1 3 1 7 - 1
raycasting [6] C 94 2 4 3 1 4 - 4
nbody [5] C 108 21 10 9 2 9, 22 -,- 2, 2
pendulum [2] C 141 4 11 8 2 24, 42 2,11 4, 2
fbenchV2 [1] C 215 8 2 5 2 6, 14 -,5 2, 2
molecular [4] C++ 323 3 8 13 3 8, 12, 11 -,-,3 1,1, 1
fbenchV1 [1] C 380 8 10 8 4 19, 6, 14, 36 -,-,5,- 5, 2, 2, 3
reactor [7] C++ 467 4 11 2 3 14, 11, 13 -,2,2 2, 0, 1
linpack [3] C 544 5 12 31 1 8 - 2
lulesh [51] C++ 2187 5 43 74 4 109, 77, 14, 41 -,-,-,- 6, 7, 6, 7

Table 1. Benchmark statistics

These benchmarks are single-threaded C or C++ floating-point programs
with arrays, structures, branching, loops, and function calls (we translated the
pendulum benchmark manually from Python to C). We modified the benchmarks by
replacing dynamic memory allocation, pointer arithmetic, and I/O operations as
appropriate, since these are challenging for most program analyses. We considered
two versions of fbench: one with user-defined trigonometric functions (V1) and
380 LOC, and another with their library versions (V2). We specified bounds on
the program inputs manually and identified a set of numerical kernels containing
a large number of arithmetic operations.

State of the Art We first evaluate existing state-of-the-art tools on our benchmark
set. For this, we choose CBMC, Astrée and AFLGo as representatives for model
checking, abstract interpretation and directed greybox fuzzing, respectively. To
the best of our knowledge, AFLGo was not used for floating-point debugging
before. These tools check for assertion violations, so we have added assertions to
our chosen kernels to check for absence of Infinity and NaN using the standard
library functions isinf and isnan.

We do not include a deductive verifier (e.g. [24]) in this comparison, because
it requires detailed user annotations of every function. None of the state-of-
the-art static roundoff-error analysis tools [43,33,31,30,60,65,72] work on the
whole applications in our benchmark set. Available dynamic analyses for finding
large roundoff errors [10,21,77,21,78,44] or special values [38,57,9] also work only
on smaller programs (often restricted to kernels). Only the dynamic-analysis
tool FPDebug [10] has been shown to scale beyond numerical kernels, but
unfortunately the code has not been actively maintained over the years.

All experiments are done for 64-bit precision and on a Debian server system
with 2.67GHz and 50GB RAM. We have used CBMC version 5.12 with MiniSat
2.2.0 (we have observed in our preliminary experiments that CBMC performs

A Two-Phase Approach for Conditional Floating-Point Verification 11

better with MiniSat), Astrée’s linux64_b5162300_release and AFLGo downloaded on
June 9, 2020. We have set a 1-hour time budget for all experiments and unrolled
all loops for 50 iterations for both CBMC and Astrée.

With CBMC and Astrée, we are able to prove the absence of special float
values in linearSVC and rayCasting, two of the smallest benchmarks. Additionally,
Astrée also proves the absence of special values in kernels 1 and 5 in fbenchV1.
For all other C benchmarks (Astrée does not work on C++ programs), Astrée
generates warnings for the potential existence of special values. With AFLGo,
however, we do not find any special values within the time limit.

For the nbody and pendulum benchmarks, we originally had larger program input
ranges. For these, AFLGo was able to show the presence of special values in the
kernels, suggesting that greybox fuzzing is effective for detecting special values.
For the subsequent experiments, we have used tighter program input ranges to
avoid special values.

6 Evaluation of our Two-Phase Approach

We next evaluate our two-phase approach. For a fair comparison with the state-of-
the-art tools, we designate a 1-hour time limit for the entire analysis, allocating
50 minutes for generating the kernel ranges and 10 minutes for the kernel analysis.
We have empirically evaluated the effect of the time limit and observed that
increasing the time does not affect the results of our benchmarks, but a smaller
time limit led to worse results.

Computing Kernel Ranges The main step is the computation of the kernel
ranges. We compare the kernel ranges obtained with blackbox fuzzing (BB),
guided blackbox fuzzing (GBB) (both implemented in Blossom), AFLGo with
our iterative widening (AFLGo), and a combination of BB and AFLGo iterative
widening (BB+AFLGo). We have empirically determined that with 5 mutants
GBB performs the best for all our benchmarks. For AFLGo, we first fuzz the
program for 5 minutes and then run our iterative widening that employs the
fuzzer in a refinement loop to widen the so-obtained ranges (see Section 2.1) for
the next 45 minutes. For BB+AFLGo, we use Blossom’s blackbox fuzzing for 25
minutes to generate the initial ranges. On these ranges, we use our range-widening
technique with AFLGo for the next 25 minutes.

To compare the obtained kernel ranges, we first compute the width of each
kernel range (x− x) and show in Table 2 the average width over all kernel inputs
and over 5 runs with different random seeds. For our dynamic analyses, we want
to maximize the kernel ranges to cover as many kernel inputs as possible.

We also add the sound over-approximated ranges computed by Astrée, when-
ever these are available. While Astrée produces a warning inside the arclength

kernel, it still computes a finite range for the kernel input.
In 5 out of the 7 kernels where Astrée finds non-trivial ranges, our fuzzing

techniques also compute ranges that are close to Astrée’s. They are even equal
in the case of rayCasting. In the other 2 cases, Astrée reports big ranges whereas

12 D. Lohar et al.

benchmark kernel #vars
avg range width kernel

Astrée BB AFLGo BB+AFLGo GBB analysis

arclength 1 1 6.16e+4 3.14 3.14 3.14 3.14 3

linearSVC 1 4 3.73 3.73 3.71 3.72 3.73 (3)
rayCasting 1 5 12.20 12.20 12.20 12.20 12.20 3

nbody
1 6 ∞ 1.09e+5 6.67e+4 1.21e+5 1.02e+8 3

2 9 ∞ 1.25e+4 8.45e+3 1.19e+4 8.91e+6 7

1 4 ∞ 14.80 12.86 14.82 14.56 3
pendulum

2 5 ∞ 22.38 17.61 22.39 22.16 3

fbenchV2
1 5 24.60 20.46 20.46 20.46 20.46 7

2 5 ∞ 21.36 21.36 21.36 21.36 7

1 1 403.00 0.18 0.18 0.18 0.18 3

2 5 20.50 20.46 20.46 20.46 20.46 7

3 5 ∞ 21.36 21.36 24.76 21.36 7
fbenchV1

4 1 1.57 1.54 1.54 1.54 1.54 3

linpack 1 8 ∞ 3.60e+6 4.44e+3 3.60e+6 2.11e+269 7

1 4 7 9.04 9.04 9.04 9.04 7

2 6 7 1.86 1.86 1.86 1.86 3molecular

3 7 7 12.88 12.88 12.88 12.88 3

reactor

1 1 7 1.00 1.00 1.00 1.00 3

2 6 7 1.43e+2 9.35e+1 1.43e+2 1.46e+2 7

3 1 7 2.50 2.50 2.50 2.50 3

1 24 7 4.97 4.80 4.97 4.95 (3)
2 18 7 6.09 5.51 5.50 5.89 3

3 9 7 3.48 3.09 3.42 3.25 3
lulesh

4 12 7 5.95 5.49 5.93 5.77 3

Table 2. Comparison of kernel ranges generated by different techniques and settings

all fuzzing techniques compute smaller ranges with the same width, suggesting a
possible large over-approximation of Astrée’s ranges (or the inability of fuzzers
to discover new kernel inputs within the time limit).

In the other cases, when Astrée finds unbounded ranges or does not work, we
observe that for all but 3 kernels, all four fuzzing techniques compute very similar
range widths. For 3 kernels, however, GBB finds significantly larger ranges, thus
discovering kernel inputs that the other methods are not able to find. We thus
conclude that guided blackbox fuzzing appears to be most suitable for computing
kernel ranges in our benchmarks, as it can discover apparent outliers.

AFLGo often computes the smallest ranges. Our hypothesis is that because
AFLGo aims to maximize the number of paths in the program to reach the target
locations in the kernels, it focuses on generating values to find new paths rather
than generating values exercising an already found path that may increase the
width of the kernel ranges.

A Two-Phase Approach for Conditional Floating-Point Verification 13

benchmark kernel #vars BB AFLGo BB+AFLGo GBB

linearSVC 1 4 - 2.21 - -

nbody
1 6 121.05 312.93 144.86 181.26
2 9 155.31 226.10 127.25 206.20
1 4 0.69 51.77 0.57 5.25

pendulum
2 5 0.69 44.37 0.54 4.48

fbenchV2
1 5 - - 1.99 -
2 5 - 0.04 - -
1 1 - 0.03 - -
2 5 - - 1.99 -fbenchV1

3 5 - 0.04 8.85 -
linpack 1 8 0.01 100.15 - 114.58
molecular 2 6 0.25 8.0 0.15 0.33

1 1 - 0.01 - -
2 6 2.51 11.32 2.91 2.80reactor

3 1 - 0.01 - -
1 24 1.67 6.76 1.74 2.50
2 18 4.28 19.73 15.59 6.96
3 9 7.14 23.25 10.55 11.97

lulesh

4 12 3.91 16.13 3.49 5.88
Table 3. Variation of computed kernel range widths (from the average width) for our
three fuzzing techniques (in %), ‘-’ denotes no variation

Effect of Randomness All fuzzing techniques (BB, GBB, AFLGo) rely on ran-
domness. To evaluate how the computed kernel ranges are affected by it, we
calculate the variation of the range widths compared to the average range width
(per variable) over 5 runs. For 7 kernels, we do not detect any variation at all for
any of the methods; Table 3 shows the variations for the remaining kernels.

We observe that all methods have large variations for the benchmarks nbody

and linpack, i.e. those for which GBB has found very large ranges. This suggests
that there are a few corner-case inputs that lead to large kernel ranges (which
only GBB was able to reliably find). Further, we see that AFLGo has a large
range variation due to randomness for a few additional benchmarks, whereas BB
and GBB have variations that are relatively small.

Conditional Kernel Verification We were able to (conditionally) prove the absence
of special floating-point values for 16 out of the 24 kernels, and (conditionally)
prove the absence of cancellation errors for 14 of those kernels. We show these
results in the last column of Table 2: ‘3’ indicates that Daisy could prove both
the absence of special values and cancellation in the kernel for the specified kernel
ranges, ‘(3)’ indicates that only the absence of special values could be verified,
and ‘7’ shows when Daisy reports a special-value warning. For the relatively small

14 D. Lohar et al.

benchmarks arclength, linearSVC and rayCasting, our verification of the kernels is
sound, i.e. unconditional, as we used ranges computed by Astrée.

When Daisy reports a warning, it is not guaranteed that a kernel can actually
compute a special-value result, because of 1) Daisy’s over-approximation of the
concrete program semantics, and because 2) the range we compute may contain
values that are not feasible in the actual program execution. To help developers
debug warnings reported by the static analyzer, we use CBMC on those kernels.

CBMC reports counterexamples in all kernels for which Daisy reports warnings.
Upon code inspection, however, we identified the counterexamples of nbody and
fbench to be spurious for the particular program inputs we consider. In these
cases, the true kernel input range was discontinuous, and the counterexamples
were reported for the infeasible inputs. In particular, in kernel 2 of nbody, a NaN
could be produced if the two bodies that are simulated collide, which would
not happen for the initial conditions that we chose. Similarly, the kernels in the
ray-tracing algorithm of fbench could produce Infinity, if the ray was chosen in a
very particular way. With the program input ranges we have chosen, this was
impossible.

For linpack, the arithmetic overflow reported is indeed genuine, since a division
by zero can occur before the kernel if the input matrix contains a zero on the
diagonal, which leads to undefined behavior and the huge range of the kernel
inputs. Similarly, for molecular and reactor, arithmetic overflow can occur for a
specific position of molecules and a specific value of the angle between particle’s
direction and the X-axis, respectively.

We note that given the counterexamples produced by CBMC, we could
straight-forwardly identify the warnings as spurious or genuine. In future work,
one could consider refining the kernel monitoring, such that it would not only
track a single range per kernel but could detect discontinuous ranges.

Our extension of Daisy reports cancellation-error warnings for one kernel of
linearSVC and one kernel of lulesh. We have used a threshold of 103 for reporting
cancellation, i.e. if the relative errors of the operands and the result differ by more
than three orders of magnitude, we report an error. We inspected the kernel code
and confirmed that the cancellation warnings are genuine, i.e. there are indeed
inputs that will result in a large roundoff error. The number of cancellations
found may seem small. We suspect that this is the case, because our benchmarks
were mostly written as reference or example programs (e.g. lulesh was developed
to be a representative hydrodynamics simulation code), hence we expect them to
be carefully developed and tested.

Kernel Optimization We have additionally applied Daisy’s rewriting optimization
on those kernels for which Daisy does not report possible special values. With
this procedure, we could reduce the roundoff errors in 8 of the kernels out of
which 6 cases are notable. We could reduce the error by 9.5% for linearSVC, 7.1%
and 3.3% for two outputs of kernel 2 in pendulum, by 19.8%, 4.0%, 5.8%, and 5.8%
for different kernel outputs of lulesh, and by 33.3% for one output of molecular.
From these experimental results, we conclude that the ranges that we inferred in
the first phase are actually useful for kernel analysis.

A Two-Phase Approach for Conditional Floating-Point Verification 15

7 Related Work

Abstract interpretation-based techniques are in principle uniquely suitable for
verifying the absence of special values and safety in floating-point programs. We
have chosen Astrée [63] in this work because it is an industrial-strength tool,
and as such, supports a wide range of C programs and is designed for scalability.
Apron [50] is a library of numerical abstract domains that are sound w.r.t. floating-
point arithmetic, and includes, for instance, the domain of polyhedra [19], which
is, however, significantly more expensive than the interval arithmetic domain
that we use. ELINA [71] provides performance-optimized implementations of
many numerical abstract domains, but its polyhedra domain does not support
floating-point arithmetic.

These domains only bound variable values; abstract domains [43,33,31,30] or
optimization-based static analyses [60,65,72] for bounding roundoff errors provide
nontrivial results only for relatively small kernels. For the second step in our
framework, we could have in principle chosen any of these tools; we chose Daisy
because we found it easy to modify for our needs, and because it already includes
the rewriting optimization.

In the space of deductive verification, besides Frama-C [24], the Boogie interme-
diate verification language [53] also has support for floating-point arithmetic and
discharges the verification conditions using the Z3 SMT solver. Similarly, bounded
model checking [52] is limited by the performance of the underlying SAT/SMT
solvers. While the floating-point support in today’s SMT solvers [17,16] has im-
proved significantly in recent years, it is still limited to relatively few arithmetic
expressions.

Many interactive theorem provers have floating-point formalizations [49,15,37].
While these do allow to prove complex functional properties [13,14,46], the proofs
are largely manual and require significant expertise.

Blackbox testing has been explored to find large roundoff errors by executing a
higher-precision version of the program side-by-side [10,21,77]. Recently, whitebox
testing has been used for detecting overflows [38], by phrasing the search as a
mathematical optimization problem, and large roundoff errors [21,78], by adapting
the notion of condition numbers. KLEE-Float [57], FPGen [44] and Ariadne [9]
use symbolic execution for finding bugs in floating-point code, including overflows
and large precision loss and cancellation. While KLEE-Float relies on the floating-
point SMT decision procedures, Ariadne approximates the path constraints and
uses the real-valued theory. FPGen injects specialized inaccuracy checks to find
cancellations. Only FPDebug [10] has been shown to scale beyond numerical
kernels and, to the best of our knowledge, none of the dynamic techniques have
been used to obtain range information.

Once a large roundoff error has been identified, Herbgrind [69] can help to
locate its root cause, which may be in a different instruction than where the error
becomes significant. Herbgrind is thus complementary to our work and may be
used to locate root causes of potential cancellation errors reported by Daisy.

Rewriting floating-point expressions in order to optimize roundoff errors has
been explored in the tool Herbie [67] and others [74,76]. These approaches attempt

16 D. Lohar et al.

to repair unstable code, checking accuracy using a dynamic analysis. They are
alternatives to using Daisy for the second step in our framework. Alternative
program optimizations that we have not explored in this work, but that also
require range information, include mixed-precision tuning [32,20,68] and general
non-semantics preserving approximation [70].

Apart from AFLGo [12], there is a wide range of targeted greybox fuzzers, such
as those targeting specified program locations [18], rare branches [54], unexplored
branches [55,73], or potential vulnerabilities [39,45,22,56]. In our setting, we
require fuzzers like AFLGo to target the specific program locations of kernels.

There is a significant body of work on guiding program analyzers. In particular,
test case generation is typically guided by a static analysis toward specific parts
of the code (e.g., [27,35,66,41,40,58,62,28,59,23,36,34,75,44]). Our approach is
similar to these techniques as it infers input ranges to guide verifiers of numerical
kernels toward those kernel executions that are relevant in the context of the
containing application.

8 Conclusion

Even though floating-point programs have received a lot of attention recently, their
focus has been largely on verifying or debugging arithmetic kernels. Our review
of existing techniques and tools has shown that few approaches with specific
floating-point support are applicable to whole programs without significant user
expertise. We have found, however, that standard greybox fuzzing proved to be
effective in detecting overflows and NaNs. Meanwhile, static-analysis techniques
to show the absence of special values and cancellation errors remain limited to
programs with few bounded loops and numerical kernels, respectively.

Instead of trying to scale up existing roundoff-error analysis tools to whole
programs, we combine them with more scalable analyses that compute the kernel
preconditions needed for the roundoff analyses to work. We showed how relatively
small adaptations to well-known techniques of directed blackbox and greybox
fuzzing are enough to realize such a framework. Together with modifications to an
existing roundoff-error analyzer, we are able to conditionally verify the absence
of special values and cancellations in a number of numerical kernels in realistic
floating-point programs that are out of reach for today’s analyses. At the same
time, our analysis is precise enough to identify several cases of cancellations. While
our approach is not suitable and not intended for certification of safety-critical
systems, we believe that it nonetheless provides valuable debugging feedback for
many real-world applications.

Acknowledgements

This research was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) project 387674182 and project 389792660
as part of TRR 248 (see https://perspicuous-computing.science). We also thank
Dr.-Ing. Jörg Herter from AbsInt for the training and assistance with Astrée.

https://perspicuous-computing.science)

A Two-Phase Approach for Conditional Floating-Point Verification 17

References

1. FBench: Trigonometry Intense Floating Point Benchmark. https://www.fourmilab.ch/
fbench/fbench.html, Accessed: 2020-10-05

2. Inverted-pendulum Control Problem. http://www.toddsifleet.com/projects/

inverted-pendulum, Accessed: 2020-10-05
3. LINPACK Benchmark. https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/

linpack_bench.html, Accessed: 2020-10-05
4. Molecular Dynamics. https://people.math.sc.edu/Burkardt/cpp_src/md/md.html, Accessed:

2020-10-05
5. N-body Problem. https://rosettacode.org/wiki/N-body_problem#C, Accessed: 2020-10-05
6. Ray-casting Algorithm. https://rosettacode.org/wiki/Ray-casting_algorithm#C, Ac-

cessed: 2020-10-05
7. Simulated Test of Reactor Shielding. https://people.math.sc.edu/Burkardt/cpp_src/

reactor_simulation/reactor_simulation.html, Accessed: 2020-10-05
8. Project Sklearn-porter. https://github.com/nok/sklearn-porter (2018)
9. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic Detection of Floating-Point Exceptions.

In: ACM Sigplan Notices. No. 1, ACM (2013)
10. Benz, F., Hildebrandt, A., Hack, S.: A Dynamic Program Analysis to Find Floating-

Point Accuracy Problems. In: Programming Language Design and Implementation
(PLDI) (2012)

11. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Programming
Language Design and Implementation (PLDI) (2003)

12. Böhme, M., Pham, V., Nguyen, M., Roychoudhury, A.: Directed Greybox Fuzzing.
In: Computer and Communications Security (CCS) (2017)

13. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Program.
Journal of Automated Reasoning 50(4) (2013)

14. Boldo, S., Filliâtre, J., Melquiond, G.: Combining Coq and Gappa for Certifying
Floating-Point Programs. In: Intelligent Computer Mathematics (2009)

15. Boldo, S., Melquiond, G.: Flocq: A Unified Library for Proving Floating-Point
Algorithms in Coq. In: Computer Arithmetic (ARITH) (2011)

16. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding Floating-Point
Logic with Abstract Conflict Driven Clause Learning. Formal Methods Syst. Des.
45(2) (2014)

17. Brain, M., Schanda, F., Sun, Y.: Building Better Bit-Blasting for Floating-Point
Problems. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2019)

18. Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., Liu, Y.: Hawkeye: Towards a
Desired Directed Grey-box Fuzzer. In: Computer and Communications Security
(CCS) (2018)

19. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain.
In: Asian Symposium on Programming Languages and Systems (APLAS) (2008)

20. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous Floating-point Mixed-precision Tuning. In: Principles of Pro-
gramming Languages (POPL) (2017)

21. Chiang, W., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient Search
for Inputs Causing High Floating-Point Errors. In: Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2014)

https://www.fourmilab.ch/fbench/fbench.html
https://www.fourmilab.ch/fbench/fbench.html
http://www.toddsifleet.com/projects/inverted-pendulum
http://www.toddsifleet.com/projects/inverted-pendulum
https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
https://people.math.sc.edu/Burkardt/cpp_src/md/md.html
https://rosettacode.org/wiki/N-body_problem#C
https://rosettacode.org/wiki/Ray-casting_algorithm#C
https://people.math.sc.edu/Burkardt/cpp_src/reactor_simulation/reactor_simulation.html
https://people.math.sc.edu/Burkardt/cpp_src/reactor_simulation/reactor_simulation.html
https://github.com/nok/sklearn-porter

18 D. Lohar et al.

22. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program Aware
Fuzzing—(Competition Contribution). In: Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS) (2019)

23. Christakis, M., Müller, P., Wüstholz, V.: Guiding Dynamic Symbolic Execution
Toward Unverified Program Executions. In: International Conference on Software
Engineering (ICSE) (2016)

24. Claude, M., Moy, Y.: The Jessie plugin for Deductive Verification in Frama-C,
Tutorial and Reference Manual. INRIA Saclay-Île-de-France & LRI, CNRS UMR
8623 (2018), http://krakatoa.lri.fr/jessie.html

25. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J.,
Yakobowski, B.: Frama-C User Manual (2011), http://frama-c.com//support.html

26. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL) (1977)

27. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining Static Checking and
Testing. In: International Conference on Software Engineering (ICSE) (2005)

28. Czech, M., Jakobs, M.C., Wehrheim, H.: Just Test What You Cannot Verify! In:
Fundamental Approaches to Software Engineering (FASE) (2015)

29. Damouche, N., Martel, M., Panchekha, P., Qiu, J., Sanchez-Stern, A., Tatlock, Z.:
Toward a Standard Benchmark Format and Suite for Floating-Point Analysis. In:
NSV (2016)

30. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy -
Framework for Analysis and Optimization of Numerical Programs. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (2018)

31. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. TOPLAS 39(2) (2017)
32. Darulova, E., Horn, E., Sharma, S.: Sound Mixed-precision Optimization with

Rewriting. In: International Conference on Cyber-Physical Systems (ICCPS) (2018)
33. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted Verification of Elementary

Functions Using Gappa. In: ACM Symposium on Applied Computing (2006)
34. Devecsery, D., Chen, P.M., Flinn, J., Narayanasamy, S.: Optimistic Hybrid Analysis:

Accelerating Dynamic Analysis Through Predicated Static Analysis. In: Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS)
(2018)

35. Dwyer, M.B., Purandare, R.: Residual Dynamic Typestate Analysis Exploiting
Static Analysis: Results to Reformulate and Reduce the Cost of Dynamic Analysis.
In: ASE (2007)

36. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-Directed Program Trim-
ming. In: Foundations of Software Engineering (ESEC/FSE) (2017)

37. Fox, A., Harrison, J., Akbarpour, B.: A Formal Model of IEEE Floating Point
Arithmetic. HOL4 Theorem Prover Library (2017)

38. Fu, Z., Su, Z.: Effective Floating-Point Analysis via Weak-Distance Minimization.
In: Programming Language Design and Implementation (PLDI) (2019)

39. Ganesh, V., Leek, T., Rinard, M.C.: Taint-Based Directed Whitebox Fuzzing. In:
International Conference on Software Engineering (ICSE) (2009)

40. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: Dynamic Symbolic Execution
Guided with Static Verification Results. In: International Conference on Software
Engineering (ICSE) (2011)

41. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional May-Must Pro-
gram Analysis: Unleashing the Power of Alternation. In: Principles of Programming
Languages (POPL) (2010)

http://krakatoa.lri.fr/jessie.html
http://frama-c.com//support.html

A Two-Phase Approach for Conditional Floating-Point Verification 19

42. Goldberg, D.: What Every Computer Scientist Should Know About Floating-point
Arithmetic. ACM Comput. Surv. 23(1) (1991)

43. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2011)

44. Guo, H., Rubio-GonzÃąlez, C.: Efficient Generation of Error-Inducing Floating-
Point Inputs via Symbolic Execution. In: International Conference on Software
Engineering (ICSE) (2020)

45. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for Overflows: A
Guided Fuzzer to Find Buffer Boundary Violations. In: Security (2013)

46. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Function.
Formal Methods in System Design 16(3) (2000)

47. Hatton, L., Roberts, A.: How Accurate is Scientific Software? IEEE Trans. Softw.
Eng. 20 (1994)

48. IEEE, C.S.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008
(2008)

49. Jacobsen, C., Solovyev, A., Gopalakrishnan, G.: A Parameterized Floating-Point
Formalizaton in HOL Light. Electronic Notes in Theoretical Computer Science 317
(2015)

50. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Computer Aided Verification (CAV) (2009)

51. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw, J.,
Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: LULESH
Programming Model and Performance Ports Overview. Tech. Rep. LLNL-TR-608824
(2012)

52. Kroening, D., Tautschnig, M.: CBMC–C bounded model checker. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Springer (2014)

53. Leino, K.R.M.: This is Boogie 2 (2008), https://www.microsoft.com/en-us/research/

publication/this-is-boogie-2-2/

54. Lemieux, C., Sen, K.: FairFuzz: A Targeted Mutation Strategy for Increasing
Greybox Fuzz Testing Coverage. In: Automated Software Engineering (ASE) (2018)

55. Li, Y., Chen, B., Chandramohan, M., Lin, S., Liu, Y., Tiu, A.: Steelix: Program-
State Based Binary Fuzzing. In: Foundations of Software Engineering (ESEC/FSE)
(2017)

56. Li, Y., Ji, S., Lv, C., Chen, Y., Chen, J., Gu, Q., Wu, C.: V-Fuzz: Vulnerability-
Oriented Evolutionary Fuzzing. CoRR abs/1901.01142 (2019)

57. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zähl, R., Wehrle, K.: Floating-
Point Symbolic Execution: A Case Study in N-Version Programming. In: Automated
Software Engineering (ASE) (2017)

58. Ma, K.K., Khoo, Y.P., Foster, J.S., Hicks, M.: Directed Symbolic Execution. In:
Static Analysis Symposium (SAS) (2011)

59. Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., Ramler, R.: GRT: Program-
Analysis-Guided Random Testing. In: Automated Software Engineering (ASE)
(2015)

60. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Trans. Math. Softw. 43(4) (2017)

61. Mahmoud, A., Venkatagiri, R., Ahmed, K., Misailovic, S., Marinov, D., Fletcher,
C.W., Adve, S.V.: Minotaur: Adapting Software Testing Techniques for Hardware
Errors. In: Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2019)

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

20 D. Lohar et al.

62. Marinescu, P.D., Cadar, C.: KATCH: High-Coverage Testing of Software Patches.
In: Foundations of Software Engineering (ESEC/FSE) (2013)

63. Miné, A., Mauborgne, L., Rival, X., Feret, J., Cousot, P., Kästner, D., Wilhelm, S.,
Ferdinand, C.: Taking Static Analysis to the Next Level: Proving the Absence of
Run-Time Errors and Data Races with Astrée. In: Embedded Real Time Software
and Systems (ERTS) (2016)

64. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society
for Industrial and Applied Mathematics (2009)

65. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis. In: SAFECOMP (2017)

66. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YOGI Project: Software
Property Checking via Static Analysis and Testing. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) (2009)

67. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Improv-
ing Accuracy for Floating Point Expressions. In: Programming Language Design
and Implementation (PLDI) (2015)

68. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: Tuning Assistant for Floating-
point Precision. In: High Performance Computing, Networking, Storage and Analysis
(SC) (2013)

69. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding Root Causes
of Floating Point Error. In: Programming Language Design and Implementation
(PLDI) (2018)

70. Schkufza, E., Sharma, R., Aiken, A.: Stochastic Optimization of Floating-Point
Programs with Tunable Precision. In: Programming Language Design and Imple-
mentation (PLDI) (2014)

71. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In: Principles
of Programming Languages (POPL) (2017)

72. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous Estimation
of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In: Formal
Methods (FM) (2015)

73. Wang, M., Liang, J., Chen, Y., Jiang, Y., Jiao, X., Liu, H., Zhao, X., Sun, J.: SAFL:
Increasing and Accelerating Testing Coverage with Symbolic Execution and Guided
Fuzzing. In: International Conference on Software Engineering: Companion (ICSE
Companion) (2018)

74. Wang, X., Wang, H., Su, Z., Tang, E., Chen, X., Shen, W., Chen, Z., Wang, L.,
Zhang, X., Li, X.: Global Optimization of Numerical Programs via Prioritized
Stochastic Algebraic Transformations. In: International Conference on Software
Engineering (ICSE) (2019)

75. Wüstholz, V., Christakis, M.: Targeted Greybox Fuzzing with Static Lookahead
Analysis. In: International Conference on Software Engineering (ICSE) (2020), to
appear.

76. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient Automated Repair of High Floating-Point
Errors in Numerical Libraries. Proceedings of the ACM on Programming Languages
3(POPL) (2019)

77. Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A Genetic Algorithm for
Detecting Significant Floating-Point Inaccuracies. In: International Conference on
Software Engineering (ICSE) (2015)

78. Zou, D., Zeng, M., Xiong, Y., Fu, Z., Zhang, L., Su, Z.: Detecting Floating-Point
Errors via Atomic Conditions. PACMPL 4(POPL) (2020)

A Two-Phase Approach for Conditional Floating-Point Verification 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Two-Phase Approach forConditional Floating-Point Verification

