Sound Mixed Fixed-Point

Quantization of Neural Networks

Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, Eva

-MSORT 2023

c& MAX PLANCK INSTITUTE

COLM UNIVERSITAT INI Nantes
= FOR SOFTWARE SYSTEMS W uu A

T : "
IO saaranoes &F Universite

Darulova

UPPSALA
UNIVERSITET

Neural networks are ubiquitous In safety-critical systems!

T

Adaptive Cruise Control

&

*
#,

Translational Oscillator Controller

,

_

>

Collision Avoidance System

_J

ga%@

Drone Controller

Neural Networks as Controllers

closed-loop system

plant model

SeNnsors actuators

7o\

O

Koo/

Neural Networks as Controllers

closed-loop system

plant model

SeNnsors actuators

controller

X1l = relu([W1] x [in] + [bl])
out = linear([W2] x [x1] + [b2])

>

feed-forward regression model

Neural networks are usually trained in high-precision!

controller

SN

Of
A O

N

Neural networks are usually trained in high-precision!

controller

high-precision

input data— training g

training

Model is usually in high-precision!

X1l = relu([W1] x [in] + [bl])
out = linear([W2] x [x1] + [b2])

controller

high-precision

input data— training g

high-precision model

Model is usually in high-precision!

X1l = relu([W1

-5.23724322e-03 ... 1.30853499e-04
out = linear([W2

-7.29779880e-01 ... =-2.27958648e-04

64-bit floating-point

high-precision

Input data—— training g

high-precision model

Safety Verification of Neural Network Controllers

high-precision {::}

iNput data— training g

ReachNN 19
Sherlock '19
NNV '20

Safety Verification of Neural Network Controllers

f’safety /- error

high-precision {::}

iNput data— training g

ReachNN 19
Sherlock '19
NNV '20

real-valued arithmetic

Safety Verification of Neural Network Controllers

’Safety /- error

high-precision {:} / ‘\
INnput data— training g \ /

ReachNN '19
- Sherlock ’19
NNV 20

Do not directly consider the finite-precision deployment of the model

Controllers deployed in Embedded Systems

model deployment

|_’Safety /- error

high-precision Q

INput data— training g

O

fixed low precision system

high-precision model

Controllers deployed in Embedded Systems

model deployment

|_’Safety /- error

high-precision Q

INput data— training g

quantization

O

fixed low precision system

high-precision model

Neural Network Quantization

high-precision {::}

’safety /- error

INnput data— training

guantization

model deployment

high-precision model

>l

O

fixed low precision system

Our Goal: Quantize respecting the error bound!

Example: Unicycle Controller

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2
-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO

500 neurons

OO

res +/- le-3

Example: Unicycle Controller

mixed-precision fixed-point code
-0.6 <= inl <= 9.55

<math.h>
—_— . —_— <ap fixed.h>
-4.5 <= 1n2 <= 0.2 <h§.,;_math.h>
~0.06 <= in3 <= 2.11 <ap_Tixed.h>

—_ . —_— void ap fixed<24,5> x 0, ap fixed<24,4> x 1, ap fixed<24,3> x 2
0.3 <= ind4 <= 1.51 (ap_ /5> %0, ap_ 4> x 1, ap_ 3> %2,

ap_fixed<24,2> x 3, ap_fixed<27,8> _result[2]) {
ap_ fixed<24,1> weightsl 0 0 = -0.036691424;

500 neurons

OO

res +/- le-3

guantization

ap_ fixed<27,8> layer2 dot 1 = (_tmp4994 + tmp4995);
ap fixed<27,8> layer2 bias 0 = (layer2 dot 0 + (ap_fixed<27,1>) (bias2 0));
ap fixed<27,8> layer2 bias 1 = (layer2 dot 1 + (ap_ fixed<27,1>) (bias2 1));
ap fixed<27,8> layer2 O (layer2 bias 0);
ap_ fixed<27,8> layer2 1 (layer2 bias _1);
_result[0] = layer2 O;
_result[l] = layer2 1;
}

Example: Unicycle Controller

mixed-precision fixed-point code
-0.6 <= inl <= 9.55

<math.h> " 1
—_— . —_— <ap fixed.h>

—4.5 <= ln2 <= 002 <h§.,;_math.h> «
~0.06 <= in3 <= 2.11 <ap_fixed.h>

—_ . —_— void ap fixed<24,5> x 0, ap fixed<24,4> x 1, ap fixed<24,3> x 2
0.3 <= ind4 <= 1.51 (ap_ /5> %0, ap_ 4> x 1, ap_ 3> %2,

ap_fixed<24,2> x 3, ap_fixed<27,8> _result[2]) {
ap_ fixed<24,1> weightsl 0 0 = -0.036691424;

500 neurons

OO

res +/- le-3

guantization

ap_ fixed<27,8> layer2 dot 1 = (_tmp4994 + tmp4995);
ap fixed<27,8> layer2 bias 0 = (layer2 dot 0 + (ap_fixed<27,1>) (bias2 0));
ap fixed<27,8> layer2 bias 1 = (layer2 dot 1 + (ap_ fixed<27,1>) (bias2 1));
ap fixed<27,8> layer2 O (layer2 bias 0);
ap_ fixed<27,8> layer2 1 (layer2 bias _1);
_result[0] = layer2 O;
_result[l] = layer2 1;
}

Example: Unicycle Controller

mixed-precision fixed-point code
-0.6 <= inl <= 9.55 <math.h>

—_ — <ap_fixed.h>
_4 ¢ 5 <= ln2 <= O ¢ 2 <hls math.h> J
-0.06 <= in3 <= 2.11 “ap_fixed.n>
_O 3 <= in4 <= 1 5 1 void (ap_fixed<24,5> x 0, ap fixed<24,4> x 1, ap fixed<24,3> x 2,

ap_fixed<24,2> x 3, ap_fixed<27,8> _result[2]) {
ap_ fixed<24,1> weightsl 0 0 = -0.036691424;

500 neurons

OO

res +/-

guantization

ap_ fixed<27,8> layer2 dot 1 = (_tmp4994 + tmp4995);
ap fixed<27,8> layer2 bias 0 = (layer2 dot 0 + (ap_fixed<27,1>) (bias2 0));
ap fixed<27,8> layer2 bias 1 = (layer2 dot 1 + (ap_fixed<27,1>) (bias2 1));
ap fixed<27,8> layer2 O (layer2 bias 0);
ap fixed<27,8> layer2 1 (layer2 bias _1);
_result[0] = layer2 O;
_result[1l] layer2 1;
}

directly compiled

& XILINX

latency = 27 cycles

State-of-the-Art in Sound Mixed Precision Tuning

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO
OO

res +/- le-3 latency = 178 cycles

v

——— | Dasy'|

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

State-of-the-Art in Sound Mixed Precision Tuning

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO

needs unrolled structures a
—_—mm—m—) :
OO =i
res +/- le-3 latency = 178 cycles

over-approximates a lot!

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

State-of-the-Art in Sound Mixed Precision Tuning

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO
OO

res +/- le-3

— > [P luner |

Daisy’

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018
2. Rigorous floating-point mixed-precision tuning, W. Chiang et al., POPL 2017

State-of-the-Art in Sound Mixed Precision Tuning

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO
OO

res +/- le-3

v

— % |FPTuner? | no fixed-point support!

Daisy’

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018
2. Rigorous floating-point mixed-precision tuning, W. Chiang et al., POPL 2017

State-of-the-Art in Neural Network Quantization

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

Shiftry?

O O O O SeeDot’
O O FP Tuner?

Daisy

res +/- le-3

1. Compiling KB-Sized Machine Learning Models to Tiny loT Devices, S. Gopinath et al., PLDI 2019
2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

State-of-the-Art in Neural Network Quantization

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

Shiftry?

O O O O SeeDot’
O O FP Tuner?

Daisy

does not work for controllers!

res +/- le-3

1. Compiling KB-Sized Machine Learning Models to Tiny loT Devices, S. Gopinath et al., PLDI 2019
2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

State-of-the-Art in Neural Network Quantization

-0.6 <= 1nl <= 9.55
-4.5 <= 1n2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

@ unsound!

Shiftry?

O O O O SeeDot’
O O FP Tuner?

Daisy

does not work for controllers!

res +/- le-3

1. Compiling KB-Sized Machine Learning Models to Tiny loT Devices, S. Gopinath et al., PLDI 2019
2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

State-of-the-Art is not enough!

-0.6 <= 1nl <= 9.55
-4.5 <= in2 <= 0.2

-0.06 <= in3 <= 2.11 B .
0.3 <= ind4 <= 1.51 Shiftry? unsound quantizers

SeeDot! for classifiers
QOO0
O O FPluner sound tuner for

Daisy’ numerical programs

res +/- le-3

State-of-the-Art is not enough!

-0.6 <= 1nl <= 9.55
-4.5 <= in2 <= 0.2

-0.06 <= in3 <= 2.11 B .
0.3 <= ind4 <= 1.51 Shiftry? unsound quantizers

SeeDot! for classifiers
QOO0
O O FPluner sound tuner for

Daisy’ numerical programs

res +/- le-3

We provide: sound quantizer for NN controllers guaranteeing error bounds

Key Ildea: Quantization for efficiency is an optimization problem!

-0.6 <= 1nl <= 9.55
-4.5 <= in2 <= 0.2

-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO

. } minimize: precision

res +/-

Key Ildea: Quantization for efficiency is an optimization problem!

n
~0.6 <= inl <= 9.55 minimize: y = Z ;/l.dOt+ yl.bms +
-4.5 <= in2 <= 0.2 i1
-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO

® integer-valued cost

. } minimize: precision

O O cost function

res +/-

Key ldea: Quantization for efficiency is an optimization problem!

n
~0.6 <= inl <= 9.55 minimize: y = Z ;/l.d01+ yl.bl“S +
-4.5 <= in2 <= 0.2 1
-0.06 <= in3 <= 2.11
-0.3 <= 1n4 <= 1.51

OOOO
OO

res +/- le-3 % error constraint

® integer-valued cost

Key Ildea: Quantization for efficiency is an optimization problem!

n
~0.6 <= inl <= 9.55 minimize: y = Zyl.d01+yibl“5+yi“
-4.5 <= 1n2 <= 0.2 i—1
-0.06 <= in3 <= 2.11 , | N
0.3 <= in4 <= 1.51 subject 1o:
€n = €1urget

‘ . e real-valued error constraint

OO

res +/- le-3 % error constraint

Quantization Formulated as an Optimization Problem

mixed-integer problem

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

® integer-valued cost

e real-valued error constraint

Quantization in Fixed-Point Precision

mixed-integer problem

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

integer bits fractional bits

sign bit [N

fixed-point representation

Quantization in Fixed-Point Precision

mixed-integer problem

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

[P > IntBits (Rl.()p + el-) constraint ensuring no overflow

integer bits fractional bits

sign bit [N

fixed-point representation

Quantization in Fixed-Point Precision

mixed-integer problem

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

mixed-integer non-linear hard problem!

Quantization in Fixed-Point Precision

mixed-integer problem

n
minimize: ¥ =) 7% + 7/ + 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

mixed-integer non-linear hard problem!

Quantization in Fixed-Point Precision

mixed-integer problem

n
minimize: ¥ =) 7% + 7/ + 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

mixed-integer non-linear hard problem!

Our Idea: Reduce to Mixed Integer Linear Programming (MILP) Problem!

Overview: Reduction to MILP

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

integer bits fractional bits

sign bit [N

fixed-point representation

Overview: Reduction to MILP

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

over-approximate integer bits separately

integer bits - fractional bits

sign bit —— - [N

fixed-point representation

Overview: Reduction to MILP

n
minimize: ¥ =) 7% + 7/ + 7
=1
subject to:

€n = €iurger AN -
inearize exactly

1 > intBits (R + ¢,

® over-approximate integer bits separately

Overview: Reduction to MILP

abstract dot product

n
minimize: y = Z e S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

® over-approximate integer bits separately

® [inearize bias cost and error constraint exactly

Overview: Reduction to MILP

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

® over-approximate integer bits separately
® [inearize bias cost and error constraint exactly

e apbstract dot product

Overview: Reduction to MILP

n
minimize: y = Z I S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

® over-approximate integer bits separately
® [inearize bias cost and error constraint exactly

e apbstract dot product

Linearization Step 1: Computing Integer Bits

integer bits fractional bits

sign bit EERERR

step 1: computing integer bits using interval arithmetic

Linearization Step 1: Computing Integer Bits

[_4_5,0.2] weightsl [-0.034,-0.01,-0.13,0.04]

in o
_0.6 <= inl <= 9.55 [_0.06,2,11] \ [0.13,0.1,0.05,-0.17]

-4.5 <= 1n2 <= 0.2 —[—0.3,1.51]_ - —
-0.06 <= 1n3 <= 2.11
-0.3 <= 1n4 <= 1.51

*]

O O O O 3 compute integer bits for variables
® - - - O
OO

res +/-

Linearization Step 1: Computing Integer Bits

[_4.5,0.2] weightsl [-0.034,-0.01,-0.13,0.04]

in o
_0.6 <= inl <= 9.55 -0.06,2.11] l0.13,0.1,0.05,-0.17]
-4.5 <= 1n2 <= 0.2 —[—0.3,1.51]_ — —
-0.06 <= 1in3 <= 2.11
2

-0.3 <= 1n4 <= 1.51

biasl +
[0.03,...,0.15]
relu
res +/- Olit_[]_

g

Linearization Step 1: Computing Integer Bits

[_4.5,0.2] weightsl [-0.034,-0.01,-0.13,0.04]

in o
_0.6 <= inl <= 9.55 -0.06,2.11] l0.13,0.1,0.05,-0.17]
-4.5 <= 1n2 <= 0.2 —[—0.3,1.51]_ — —
-0.06 <= 1in3 <= 2.11
2

-0.3 <= 1n4 <= 1.51

biasl +
[0.03,...,0.15]
relu
res +/- o&t

Computed integer bits for all variables and constants without overflow

Overview: Reduction to MILP

n
minimize: ¥ =) 7% + 7/ + 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

%ver—approximate INnteger bits separately

® [Inearize bias cost and error constraint exactly

e apbstract dot product

Linearization Step 2: Exact Linearization of Cost

n
minimize: ¥ =) 7% + 7/ + 7
=1
subject to:

€r = €1arget

1 > intBits (R + ¢,)

}/ibias — max(ﬂidOt’ ﬂ.ibiaS)

non-linear function

Linearization Step 2: Exact Linearization of Cost

n
minimize: y = Z I S P 7
=1
subject to:

€r = €1arget

1 > intBits (R + ¢,)

}/ibias — max(ﬂidOt’ ﬂ.ibiaS)

v
. ,Dbi dot
c1: yilaszn.io

cD }/ibzas > ﬂ.iblas

Overview: Reduction to MILP

n
minimize: y = Z e S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

Inearize bias cost and error constraint exactly

%ver—approximate INnteger bits separately

¢ abstract dot product

Linearization Step 3: Abstract Dot Product

assume a precision for weights, correct it later

n
minimize: y = Z e S P 7
=1
subject to:
€n = €1urget

1 > intBits (R + ¢,

%ver—approximate INnteger bits separately

WHearize blas cost and error constraint exactly
Vabstract dot product

Optimizing Fractional Bits for Dot and Bias Products

Linearized Problem

n
minimize: y = Z S e 7
=1

subject to;
€n = €1urget

1 > intBits (R + ¢,

integer bits * fractional bits
sign bit HEEEE

Optimizing Fractional Bits for Dot and Bias Products

Linearized Problem

n
minimize: y = Z S e 7
=1

subject to;
€n = €1urget

1 > intBits (R + ¢,

-SCIP - p;

<\ /¢

S 2

N O 8
2 &
Q S

o S
OPTIMIZAS

integer bits fractional bits
sign bit HEEEE

Assign Correctly Rounded Precision to Weights

integer bits fractional bits
sign bit ENEEEE

fixed-point representation

-+ computed integer bits for all variables and constants

- optimized fractional bits for dot and bias results assuming precision of weights

Assign Correctly Rounded Precision to Weights

integer bits fractional bits

sign bit [N

fixed-point representation

-+ computed integer bits for all variables and constants
- optimized fractional bits for dot and bias results assuming precision of weights

assigning correctly rounded precision for all variables and constants

Assign Correctly Rounded Precision to Weights

integer bits fractional bits

sign bit [N

fixed-point representation

-+ computed integer bits for all variables and constants
- optimized fractional bits for dot and bias results assuming precision of weights

assigning correctly rounded precision for all variables and constants

using fixed-point sum of products by constants”

* A Correctly-Rounded Fixed-Point-Arithmetic DotProduct Algorithm, Sylvie Boldo, Diane Gallois-Wong, and Thibault Hilaire, ARITH 2020

Aster: Sound Quantizer for NN Controllers

def UnicycleController(in: Vector): Vector = {

require(-0.6<=1nl1<=9.55 && -4.5<=1n2<=0.2
&§& -0.06<=in3<=2.11 && -0.3<=in4<=1.51)

weightsl = Matrix[...]
weights2 = Matrix[...]
biasl = Vector(..)
bias2 = Vector(...)

x1l = relu(weightsl * in + biasl)
out = linear(weights2 * x1 + bias2)
return out

}

ensuring (res +/- le-3)

high-level model

Aster: Sound Quantizer for NN Controllers

mixed-precision fixed-point code

<math.h>

<ap_ fixed.h>

<hls math.h> «
<ap fixed.h>

void (ap_fixed<24,5> x 0, ap fixed<24,4> x 1, ap fixed<24,3> x 2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
ap_ fixed<24,1> weightsl 0 0 = -0.036691424;

def UnicycleController(in: Vector): Vector = {

require(-0.6<=inl<=9.55 && -4.5<=in2<=0.2
&§& -0.06<=in3<=2.11 && -0.3<=in4<=1.51)

weightsl = Matrix[...]
weights2 = Matrix[...]
biasl = Vector(..)

bias?2 = Vector () ap fixed<27,8> layer2 dot 1 = (_tmp4994 + tmp4995);
] e . . ap fixed<27,8> layer2 bias 0 = (layer2 dot 0 + (ap_ fixed<27,1>) (bias2 0));
x1l = relu (welghts l * 1n + biasl) ap fixed<27,8> layer2 bias 1 = (layer2 dot 1 + (ap_fixed<27,1>) (bias2 1));
— . . * + . ap fixed<27,8> layer2 0 = (layer2 bias 0);
out linear (Welghtsz x1 blas2) ap fixed<27,8> layer2 1 = (layer2 bias 1);
return out _result[0] = layer2 O;
} _result[l] = layer2 1;
ensuring (res +/- le-3) }

high-level model

Aster: Sound Quantizer for NN Controllers

mixed-precision fixed-point code

<math.h>

<ap_ fixed.h>

<hls math.h> «
<ap fixed.h>

void (ap_fixed<24,5> x 0, ap fixed<24,4> x 1, ap fixed<24,3> x 2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
ap_ fixed<24,1> weightsl 0 0 = -0.036691424;

def UnicycleController(in: Vector): Vector = {

require(-0.6<=inl<=9.55 && -4.5<=in2<=0.2
&§& -0.06<=in3<=2.11 && -0.3<=in4<=1.51)

weightsl = Matrix[...]
weights2 = Matrix[...]
biasl = Vector(..)

bias?2 = Vector() ap fixed<27,8> layer2 dot 1 = (_tmp4994 + tmp4995);
ap fixed<27,8> layer2 bias 0 = (layer2 dot 0 + (ap_ fixed<27,1>) (bias2 0));

x1l = relu (weights 1 * in + biasl) ap fixed<27,8> layer2:bias_l = (layer2 dot_ 1 + (ap fixed<27,1>) (bias2 1));
— . . * + J ap fixed<27,8> layer2 O (layer2 bias 0);
out linear (welghts 2 x1 blas2) ap fixed<27,8> layer2 1 (layer2 bias 1);
return out _result[O0] layer2 O;
} _result[1l] layer2 1;
ensuring (res +/- le-3) }

high-level model directly compiled

& XILINX

Aster vs State-of-the-Art in terms of Latency

benchmarks

InvPendulum
MountainCar
MPC
DoublePendulum
ACC3

Unicycle
Airplane
ControllerTora

ACS

#params
60
336
720
825
980
3,500
13,540
20,800

44,545

Latencies of implementations considering target error 1e-3

Aster vs State-of-the-Art in terms of Latency

benchmarks #params

InvPendulum 60 12
MountainCar 336 27
MPC 720 inf
DoublePendulum 825 36
ACC3 980 49
Unicycle 3,500 178
Airplane 13,540 TO
ControllerTora 20,800 TO
ACS8 44,545 TO

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

Aster vs State-of-the-Art in terms of Latency

benchmarks #params

InvPendulum 60 12 12
MountainCar 336 27 25
MPC 720 inf 35
DoublePendulum 825 36 27
ACC3 980 49 44
Unicycle 3,500 178 27
Airplane 13,540 TO

ControllerTora 20,800 TO

ACS8 44 ,545 TO

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

Aster vs State-of-the-Art in terms of Latency

benchmarks #params

InvPendulum 60 12 12
MountainCar 336 27 25

MPC 720 inf 35
DoublePendulum 825 36 27

ACC3 980 49 44
Unicycle 3,500 178 27
Airplane 13,540 TO anrolled |40 KLOG
ControllerTora 20,800 T0O programs are |52 KL OC
AC8 44,545 TO too large 134 KLOC

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

Aster vs State-of-the-Art in terms of Latency

benchmarks #params

InvPendulum 60 12 12
MountainCar 336 27 25
MPC 720 inf 35
DoublePendulum 825 36 27
ACC3 980 49 44
Unicycle 3,500 178 27
Airplane 13,540 T0 9,001*
ControllerTora 20,800 TO 13,158*
ACS8 44,545 TO Q*

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

*. compiled with explicit loops (i.e. not unrolled code),e: Xilinx failed to compile the implementation

Aster vs State-of-the-Art in terms of Optimization Time

benchmarks

InvPendulum 4.19s
MountainCar 43.68s
MPC inf
DoublePendulum 4m 6.64s
ACC3 dm 52.05s
Unicycle 2h 46m 20.65s
Airplane T0O
ControllerTora TO
ACS8 TO

Optimization time averaged over 3 runs considering 1e-3 target error, TO: timed out after 5 hours, inf: tool returns infeasible

Aster vs State-of-the-Art in terms of Optimization Time

benchmarks

InvPendulum 4,.19s l1.66s
MountainCar 43.68s 2.22s
MPC inf 3.50s
DoublePendulum 4m 6.64s 3.80s
ACC3 4m 52.05s 7.28s
Unicycle 2h 46m 20.65s 49.92s
Airplane T0O 17m 40.92s
ControllerTora TO 47m 55.95s
ACS8 T0 3h 49m 31.43s

Optimization time averaged over 3 runs considering 1e-3 target error, TO: timed out after 5 hours, inf: tool returns infeasible

What else is there in the paper?

- The detalls of the MILP formulation

- Further linearization of error constraints

+ Implementation details of the tool Aster

- Extensive experiments on

- parameter evaluation of Aster
- several benchmarks with different target errors

- comparison of cost functions

Sound Mixed Fixed-Point Quantization of Neural Networks,

Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, Eva Darulova,
ESWEEK-TECS special issue, 2023

Summary

- Optimization based mixed precision fixed-point quantization for regression models
- Quantized code guarantees target roundoff error and runs on custom hardware

+ A tool Aster that Is sound, automated, scalable for large networks with many parameters

