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Towards Precision-Aware Safe Neural-Controlled
Cyber-Physical Systems

Harikishan T S, Sumana Ghosh, and Debasmita Lohar

Abstract—Cyber-physical systems (CPS) are increasingly uti-
lizing neural networks (NN) as controllers. Thus, ensuring the
safety of these systems becomes crucial, specifically in the context
of safety-critical application domains. Current safety verification
focuses on reachability analysis, considering bounded errors from
noisy environments or inaccurate implementations. However, it
assumes real-valued arithmetic and does not account for the
fixed-point quantization often used in embedded systems. Some
recent efforts have focused on generating sound quantized NN
implementations in fixed-point, ensuring specific target error
bounds, but they assume the safety of NNs is already proven.

To bridge this gap, we introduce Nexus, a novel two-phase
framework combining reachability analysis with sound NN quan-
tization. Nexus provides an end-to-end solution that ensures CPS
safety within bounded errors while generating mixed-precision
fixed-point implementations for NN controllers. Additionally, we
optimize these implementations for automated parallelization on
FPGAs using a commercial HLS compiler, reducing machine
cycles specifically for larger NN controllers.

I. INTRODUCTION

Modern cyber-physical systems (CPSs) are rapidly evolving
to handle complex functionalities in highly dynamic, nonlin-
ear, and uncertain environments. These closed-loop systems
are involving neural networks (NNs) as controllers for their
flexibility and adaptability. However, deploying NN-controlled
systems in safety-critical applications like adaptive cruise
control for cars or airplane collision avoidance systems [1]
requires ensuring safety and being optimized for efficiency.

Recent efforts have focused on automatically verifying the
safety of NN-controlled systems [2], [3], [4], [5]. These meth-
ods consider NN controllers trained in high-precision floating-
point arithmetic on powerful machines with GPUs emulating
exact real-valued arithmetic. These controllers sense system
states at discrete intervals, compute control values, and adjust
system dynamics based on ordinary differential equations. The
aim of the verification is to estimate safe, reachable states of
the system within a finite time, considering bounded errors
from noisy environments or inaccurate implementations.

However, directly implementing high-precision floating-
point NN controllers on embedded architectures with con-
strained resources is often impractical due to high computation
costs or the lack of dedicated floating-point co-processors
or software-based emulation capabilities. Consequently, these
NNs, in practice, are quantized using low-precision fixed-
point arithmetic [6], [7] to optimize area or latency. It is thus
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crucial to verify that after quantization, the implementations
still satisfy the error bounds derived during safety verification.
Unfortunately, current safety verification methods do not con-
sider final implementations and thus do not guarantee that the
implementations meet the derived error bounds.

Various automated quantization approaches exist for NNs.
Some adopt uniform precision for all layers [6], [7], [8], while
others focus on mixed-precision quantization [9], [10], [11],
[12], which has gained more popularity for using different
precisions for different operations or layers, leading to greater
resource savings. While most quantization methods dynam-
ically compare classification accuracy without guaranteeing
for all possible inputs, only the tool Aster [12] generates
sound NN controller implementations that meet predefined
error bounds. However, Aster assumes the safety of the NN
controllers has been proven within the error bounds.

In this paper, we introduce Nexus, a two-phase frame-
work that integrates safety verification with mixed fixed-point
quantization of NN controllers. We employ a state-of-the-art
scalable reachability analyzer POLAR-Express [2] to prove the
safety of the closed-loop NN-controlled system in a finite time
and adapt it to consider an error for implementations. If the
system is proven safe, we then utilize the only existing sound
NN quantizer Aster to generate a mixed fixed-point implemen-
tation guaranteeing the error bound. This implementation can
then be compiled using commercial HLS compilers. Further-
more, Nexus extends Aster’s code generation to produce code
with loops, automatically parallelizable by HLS compilers,
thus reducing the latency of the final code. Our evaluation
shows that the latencies of Nexus’s code are significantly less
than Aster’s for all 7 safe benchmarks that we consider for
our experiments. These reductions are particularly high for 3
other larger benchmarks with thousands of parameters.

Though there is a large body of work on integrating dif-
ferent analyses, our approach is unique, as, to the best of
our knowledge, Nexus is the first tool to offer an end-to-
end solution for precision-aware, safe, NN-controlled CPSs.
Our novel extensions also generate parallel code constructs,
effectively leveraging hardware. In summary, this paper makes
the following contributions:

1) an end-to-end method with a prototype tool that com-
bines closed-loop safety verification of CPS and sound
quantization of NN controllers available at https://github.
com/harikishants/Nexus,

2) an extended code generation compatible with commercial
HLS compilers for automated parallelization, and

3) an evaluation on benchmarks collected from both aca-
demic and industrial settings.



2

POLAR-
Express

init conditions
+ p-dynamics
+ safety prop

NN controller

error

safe?

Aster

input
range

HLS
compiler

safe NN code

N
e
x
u
s

extended
code gen

Fig. 1: An Overview of Nexus

II. NEXUS: A TWO-PHASE FRAMEWORK

Consider an inverted pendulum taken from [1]. The plant
state is represented by a 4-parameter vector x̄ (horizontal
position and velocity of the cart, angular position and velocity
of the pendulum) with initial conditions x1 ∈ [0.1, 0.11],
x2 = x3 = x4 = 0 and a control input u = 0. The plant
dynamics are given by:

ẋ1 = x2, ẋ2 = 0.0043x4 − 2.75x3 + 1.94u− 10.95x2,

ẋ3 = x4, ẋ4 = 28.58x3 − 0.044x4 + 4.44u+ 24.92x2.

The safety property requires keeping the pendulum vertically
balanced by maintaining x1, x2, x3, x4 ∈ [−0.2, 0.2] for 1 s
with a control step size of 0.05 s. The NN controller takes x̄
as input and outputs the control action u. An error bound of
1e−5 is considered to account for implementation errors. Our
goal is to prove that the system is safe and, if so, generate a
controller implementation that satisfies the error bound.

Fig. 1 provides an overview of Nexus. It begins with the
plant dynamics, initial conditions, safety property, and error
bound and verifies system safety using reachability analysis
with POLAR-Express [2] under real arithmetic. If the system
is safe, Nexus extracts the max and min values to define the
sound ranges of the plant states. Next, these ranges and the
error bound are used to quantize the NN controller into a fixed-
point mixed-precision C++ implementation, guaranteeing the
error bound, with Aster [12]. This approach ensures that Nexus
not only proves system safety but also generates implemen-
tations that maintain system safety and the error bound. The
following sections explain each of these phases in detail.

A. First Phase: Safety Verification

In this phase, we prove safety by simulating exact or over-
approximated reachable sets containing all possible trajectories
of the plant. We then verify if any unsafe state can be reached
from a given initial state. The underlying reachability analysis
tool POLAR-Express iteratively computes functional over-
approximations of reachable states using a layer-by-layer prop-
agation of Taylor model TM(p, I), where p is the polynomial
used for approximation and I denotes the interval remainder,
capturing the over-approximation error (we refer the readers
to [2] for more details). While adjusting I ensures tight over-
approximations, it does not account for implementation errors
that may arise when quantizing NN controllers for resource-
constrained embedded platforms using fixed-point arithmetic.

To address this, in Nexus, we add a predefined quantiza-
tion error (ϵ) during safety verification. In each step of the
reachability analysis, the error ϵ is added to the remainder I

1 def code_gen(in x̄, weight W, bias b, act α, lyr L):
2 in← x̄
3 for l ← 2 to L: tmp, sum,out← ∅
4 for i← neurons in layer l: // parallelized
5 for j ← neurons in layer l − 1: // parallelized
6 tmpj ← wl

ij · inj

7 sumi ← bli
8 for j ← neurons in layer l − 1:
9 sumi ← sumi + tmpj

10 outi ← αl(sumi)
11 in← out

Fig. 2: Nexus’s Code Generation

of the NN output. Thus, safety analysis is performed consid-
ering errors from both over-approximations of the reachability
analysis and code quantization.

If Nexus proves that the system is safe, it extracts ranges
(Ri) for all plant state variables from the ith simulation step by
adding I to the over-approximated ranges ensuring soundness.
From the set of all Ri for all plant state variables, Nexus
computes the max and min values to generate sound ranges
for these variables, which are the inputs to the NN controller.

For the inverted pendulum, Nexus proves that the system is
safe for 20 simulation steps, considering the initial conditions
and safety property, and generates the following ranges for the
plant state variables: x1 ∈ [0.07, 0.11], x2 ∈ [−0.05, 0.05],
x3 ∈ [−0.01, 0.00], and x4 ∈ [−0.12, 0.02].

B. Second Phase: Sound NN Quantization

In the next phase of Nexus, the goal is to quantize the
safe real-valued NN controllers to generate a mixed-precision
fixed-point (represented by the total number of bits and the
binary point position deciding the number of fractional bits)
code that can be run efficiently in embedded systems.

Nexus utilizes the ranges of NN input variables from the
first phase and the error bound to generate an implementation
by solving an optimization problem. This problem aims to
minimize the required number of bits for all variables and
constants while adhering to the error bound and avoiding
overflow in fixed-point quantization. Internally, Nexus em-
ploys Aster to define and solve this optimization problem (for
detailed constraints, see [12]). If it is impossible to generate an
implementation within the maximum allowed number of bits
(e.g., 32 bits), Nexus returns an infeasible solution. Otherwise,
it generates a complete C++ implementation directly com-
patible with commercial HLS compilers such as Xilinx Vitis
HLS [13]. Consequently, an FPGA design can be synthesized,
and the simulated running time (or latency) can be obtained
in terms of clock cycles. It is important to note that as Aster
can only handle feed-forward DNNs with ‘linear’ and ‘relu’
activations, Nexus also operates under the same constraints.

For the inverted pendulum, we use the ranges generated in
the first phase and configure Nexus to use a range [10, 32] of
fractional bits for all variables and an initial error of 2−32.
Nexus successfully generates an implementation for it.

Extended Code Generation: The underlying tool Aster
generates implementations with both fully unrolled code
(where matrices and vectors are converted into scalar vari-
ables) and a looped version that keeps the data structures



3

benchmarks #plant-vars neural controller spec.
ctrl-step #hid-lyr #params

InvPend 6 0.05 1 60
MountCar 3 1.00 2 336
SglPend 4 0.05 2 775
DblPendV1 7 0.05 2 825
DblPendV2 7 0.02 2 825
ACC3 10 0.10 3 980
ACC5 10 0.10 5 1,820
ACC7 10 0.10 7 2,660
Unicycle 7 0.20 1 3,500
ACC10 10 0.10 10 3,920
Airplane 19 0.10 3 13,540
TORA 5 1.00 3 20,800

TABLE I: Benchmark details (plant controller specifications)

intact. However, it does not leverage the inherent parallelism
available in custom hardware like FPGAs. Nexus extends the
vanilla code generation by adding directives and nested looped
constructs to enable automated parallelism in standard HLS
compilers, synthesizing a parallelized hardware design that
reduces latency. We present the extended code generation
in Fig. 2. In an NN, each layer depends on the previous
layer, requiring serial computation across layers. However,
within each layer, the computation of each neuron’s output
is independent and can be parallelized (line 4). Additionally,
the multiplications of weights and inputs within each neuron
are independent and can be parallelized (line 5). Thus, Nexus
returns a C++ code with nested loops and directives.

We utilized Nexus’s code generation for the inverted pendu-
lum example. Nexus’s nested looped code achieved a latency
of 14 cycles, outperforming vanilla Aster’s unrolled code with
16 cycles and looped code with 18 cycles.

III. EXPERIMENTAL EVALUATION

a) Benchmarks: We used 12 NN controllers from Aster’s
benchmark set [12] and collected the respective plant dynamics
from the competition at the ARCH workshop from the years
2019 [14] and 2020 [1]. These include controllers for inverted
pendulums (InvPend, SglPend, DblPend nonrobust V1
and robust V2), cars (Unicycle, MountCar), a rotational
actuator (TORA), a simple aircraft (Airplane), and adaptive
cruise controllers with different hidden layers (ACCs). The
details of the benchmarks are presented in Table I.

b) Experimental Setup: All experiments were done on
an Ubuntu 20.04 running on an Intel Core i5 system with 3.3
GHz clock speed and 32 GB RAM. We used POLAR-Express
(commit 13d42b0) and Aster (commit 2c991fb), downloaded
from GitHub on Aug. 18, 2023, and Mar. 20, 2024, respec-
tively. For FPGA design synthesis, we employed Xilinx’s Vitis
HLS [13] (version 2023.2), downloaded on Feb. 22, 2024.

We configured Aster with two settings and two error bounds:
A for error 1e− 3 and B for 1e− 5. Setting A initialized the
number of fractional bits to 20 (error: 2−20), and setting B to
32 (error: 2−32). Both settings allowed a max of 32 bits, with
ranges of fractional bits [5, 32] for setting A and [10, 32] for
setting B. A run of Nexus was allocated a 5-hour time budget.

c) Safety Verification and Sound Code Generation:
Table II summarizes all experiments. As expected, more
benchmarks (8 out of 12) are safe with the smaller error bound

error: 1e− 3, setting A error: 1e− 5, setting Bbenchmarks safe latency time(s) safe latency time(s)

InvPend ✓ 12 3.15 ✓ 14 3.16
MountCar ✗ - - ✓ 25 66.35
SglPend ✓ 23 5.16 ✓ 27 5.15
DblPendV1 ✓ 26 7.10 ✓ 27 6.80
DblPendV2 ✓ 26 5.80 ✓ 28 5.84
ACC3 ✓ 40 10.49 ✓ 39 10.47
ACC5 ✓ inf - ✓ 63 19.78
ACC7 ✓ inf - ✓ inf -
Unicycle ✕ - - ✕ - -
ACC10 ✕ - - ✕ - -
Airplane ✗ - - ✗ - -
TORA ✗ - - ✗ - -

TABLE II: Safety analysis (✓: safe, ✗: unsafe, ✕: analysis
fails), latencies of safe controller implementations (inf: tool
returns infeasible) and running times of Nexus

of 1e− 5 compared to 1e− 3 (7 out of 12). For larger bench-
marks like Unicycle, ACC10, high over-approximations in
reachability analysis prevented safety verification. The largest
benchmarks, Airplane and TORA, were found unsafe given
our initial conditions, safety properties, and error bounds.

For benchmarks proven safe in the first phase, we attempted
to generate implementations with Nexus’s code generation.
Setting A, starting with a larger initial error (2−20), is expected
to report more infeasibility where generating a sound imple-
mentation that satisfies both the error bound and the max bit
length is impossible. This was observed for ACC5. For ACC7,
Nexus returns infeasible for both errors due to increasing over-
approximation errors with the increasing number of layers.

For benchmarks where we could generate implementations,
we compiled them for a standard FPGA architecture using
Xilinx’s HLS and presented the latencies in clock cycles that
the compiler reported for the final hardware implementations.
Naturally, the implementations with the error bound 1e − 5
have higher latencies due to the increased no. of bits required
to satisfy this smaller error bound compared to the error 1e−3.

We also show the running times in Table II (columns 4,
7). While time increases with the size of the networks, Nexus
took a max of 20 s for the largest safe benchmark, ACC5.

d) Looped Code Generation: This section compares
Aster’s code generation with Nexus’s, as shown in Table III.
We refer to the code without parallelization directives as serial
and the code with directives as parallel. We generated parallel
versions of Aster’s unrolled and looped code and the serial ver-
sion of Nexus’s nested-loop code. The benchmarks presented
here are those for which we could generate implementations.

Our results show that using directives in unrolled code does
not improve latencies w.r.t. the serial version due to instruction
inter-dependencies (except for InvPend and DblPend).
However, the compiler effectively identified parallelism in
the looped and nested-looped versions, significantly reducing
latency compared to the serial versions. Moreover, as expected,
unrolled serial implementations have lower latencies, but
Nexus’s nested-looped parallel implementations outperform
them due to efficient parallelization, especially for larger NNs.

We also compared the design synthesis times. Our results
show that while serial implementations have shorter synthesis
times, the looped versions are faster than the unrolled ones
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benchmarks
latencies of implementations (cycles) design synthesis time (s)

unrolled looped nested-looped unrolled looped nested-looped
serial parallel serial parallel serial parallel serial parallel serial parallel serial parallel

InvPend 16 15 36 18 57 14 27.75 26.84 24.85 25.93 23.41 24.37
MountCar 30 30 92 38 106 25 43.37 43.41 28.33 34.81 24.43 31.32
SglPend 31 30 122 47 141 27 72.37 72.89 35.30 51.08 24.72 46.16
DblPendV1 32 31 135 50 89 27 77.90 77.34 35.30 51.22 25.46 44.34
DblPendV2 35 34 134 51 90 28 78.97 76.10 36.65 52.63 25.49 43.21
ACC3 58 58 162 65 158 39 94.06 94.64 38.54 59.29 26.26 49.91
ACC5 99 99 273 107 229 63 199.12 191.53 50.34 99.26 33.62 98.23

TABLE III: Comparing Aster’s unrolled serial and looped serial implementations with Nexus’s optimized implementations
(nested-looped serial and all parallels) for automated parallelization using Xilinx with error 1e− 5 and setting B

benchmarks Aster (serial) Nexus (parallel)
unrolled looped looped nested-looped

Unicycle 29 864 265 18
Airplane 75 510 152 43
TORA ✕ 604 186 41

TABLE IV: Comparing latencies of Aster’s and Nexus’s
implementations for larger benchmarks (✕: Xilinx fails)

due to the more compact representation of NNs.
To demonstrate the utility of Nexus’s code generation for

larger NNs, we used the second phase of Nexus to generate
code for the three largest unsafe benchmarks with error 1e−3
and setting B (setting A was inf due to the large initial error).
Generating looped code is crucial for these benchmarks as
serial implementations can become too large to compile (e.g.,
62K lines of code for TORA). Table IV presents the results.
It shows that Nexus’s parallel nested-looped code significantly
outperforms Aster in terms of latency for all three benchmarks.

IV. RELATED WORK

The safety verification of NN-controlled CPSs has attracted
significant attention in recent years. Methods like [2] utilize
Taylor approximation of the NN controller and construct a
flowpipe to compute tight over-approximated reachable sets,
while others [4] convert the controller into an equivalent non-
linear hybrid system, then combine with the plant dynamics to
verify safety properties. Similarly, NN verification is done by
combining it with standard hybrid automata verification [15],
approximating it with a polynomial with error bounds [3],
or using set representations such as star sets [5] with tight
over-approximations of error bounds. In principle, any of these
methods could be used for the first phase of Nexus. However,
these techniques assume real-valued arithmetic for their safety
proofs and do not verify safety after quantization.

Alternatively, there is extensive literature on the quantization
of neural networks [6], [7], [8], [12], [9], [10], [11], but most
techniques have been dynamically applied to neural network
classifiers outside of safety-critical applications. Hence, they
are fundamentally different from the sound mixed-precision
tuning for controllers, which is the goal of this paper.

The only work similar in flavour to ours is presented
in [16], where the focus is also on verifying a floating-point
implementation w.r.t a high-level linear time-invariant model
of the controller. However, they do not consider NN controllers
or fixed mixed-precision implementations. Also, they extract
a high-level model from the implementation and verify it,

whereas we automatically generate the implementation that
satisfies the properties of the high-level model.

V. CONCLUSION

This paper presents a novel, scalable integration of reach-
ability analysis with sound quantization for NN-controlled
CPSs. Our generated implementations show optimization po-
tential in terms of latency, especially for custom hardware
like FPGAs. While we currently focus on feed-forward NN
controllers with ReLU and linear activations due to underlying
tool constraints, the future holds promise for further enhance-
ments to Nexus, including support for non-linear activations,
hybrid controllers, and other networks like CNN.
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