
Sound Mixed Fixed-PointQuantization of Neural Networks
DEBASMITA LOHAR,MPI-SWS, Saarland Informatics Campus, Germany

CLOTHILDE JEANGOUDOUX,MPI-SWS, Germany

ANASTASIA VOLKOVA, Nantes Université, France
EVA DARULOVA, Uppsala University, Sweden

Neural networks are increasingly being used as components in safety-critical applications, for instance, as

controllers in embedded systems. Their formal safety verification has made significant progress but typically

considers only idealized real-valued networks. For practical applications, such neural networks have to

be quantized, i.e., implemented in finite-precision arithmetic, which inevitably introduces roundoff errors.

Choosing a suitable precision that is both guaranteed to satisfy a roundoff error bound to ensure safety and

that is as small as possible to not waste resources is highly nontrivial to do manually. This task is especially

challenging when quantizing a neural network in fixed-point arithmetic, where one can choose among a large

number of precisions and has to ensure overflow-freedom explicitly.

This paper presents the first sound and fully automated mixed-precision quantization approach that

specifically targets deep feed-forward neural networks. Our quantization is based on mixed-integer linear

programming (MILP) and leverages the unique structure of neural networks and effective over-approximations

to makeMILP optimization feasible. Our approach efficiently optimizes the number of bits needed to implement

a network while guaranteeing a provided error bound. Our evaluation on existing embedded neural controller

benchmarks shows that our optimization translates into precision assignments that mostly use fewer machine

cycles when compiled to an FPGA with a commercial HLS compiler than code generated by (sound) state-of-

the-art. Furthermore, our approach handles significantly more benchmarks substantially faster, especially for

larger networks.
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1 INTRODUCTION
Neural networks (NN) are increasingly being considered as components in safety-critical systems.

For example, neural network controllers have been shown to be effective for a variety of closed-loop

systems, including simple car and airplane models, adaptive cruise control, and aircraft collision

avoidance [15, 16, 34]. Ensuring their correctness for safety-critical applications is nontrivial, but

several recent approaches and tools can already automatically verify the safety of limited-size but

interesting systems [27, 31, 49, 51].

To make such neural networks practical, they need to be safe but also efficient. While NNs are

typically trained in high-precision floating-point arithmetic on server-like machines with graphics

processing units (GPUs), this high precision can be prohibitively expensive for resource-constrained

embedded systems. To obtain efficiency, e.g., in terms of area, latency, or memory usage, the trained

NNs are quantized to use, for example, low-precision fixed-point arithmetic [21, 23].

The increased efficiency due to low precision comes at the cost of reduced accuracy of the NN

computations since each operation potentially incurs a (larger) roundoff error. To ensure the overall

correctness of systems with NNs, we thus need to choose the precision for quantization such that

the safety of the overall system can still be guaranteed, i.e., the roundoff error is within some

application-specific bound. While the safety proofs of NN controllers, for instance, do not take

into account finite-precision roundoff errors directly and assume exact real-valued arithmetic for

performance reasons, they typically allow to account for bounded errors stemming from a noisy

environment or from inaccurate implementations.

Numerous approaches have been proposed for the quantization of neural networks, demonstrat-

ing promising results on standard machine learning benchmarks [21, 23, 37, 44, 47, 48]. However,

these techniques are not applicable to safety-critical closed-loop control systems for two primary

reasons. First, they are specifically tailored for neural network classifiers, focusing on dynamically

comparing classification accuracy on specific test datasets. As a result, they cannot handle neural net-

work controllers that do not perform classifications tasks and rather implement regression tasks and
compute (continuous) control values. Secondly, they are not sound which means they cannot guar-

antee (classification) accuracy for all possible inputs, which is essential for safety-critical systems.

On the other hand, the available tools that do focus on sound quantization or precision tuning are

primarily designed for general-purpose arithmetic code [10, 11]. When applied to neural networks,

they often provide overly conservative results or are inefficient, as they do not leverage the unique

characteristics, structures and optimizations specific to neural networks.

In this paper, we present the first sound and fully automated mixed-precision quantizer for fixed-

point arithmetic that specifically targets fully connected feed-forward deep neural networks. We

support an arbitrary number of layers with ReLU or linear activation functions and efficiently

minimize the number of bits needed to implement a network while guaranteeing a provided error

bound wrt. an idealized real-valued implementation. While our implementation targets these

networks as they are sufficient for many circumstances in neural network controllers (all our

benchmarks are real-world controllers that were used in the context of sound verification), the

proposed technique is not fundamentally limited to feed-forward networks; it handles networks

with (sparse) matrix multiplications and linearized activations.

We focus onmixed-precision fixed-point arithmetic because it allows for efficient implementations

on resource-constrained systems. Fixed-point arithmetic can be implemented with standard integer

operations (in particular it avoids specialized floating-point hardware), and when implemented

on configurable hardware such as FPGAs allows operations to use an arbitrary number of bits.

Thus, unlike floating-point arithmetic, which is limited to typically 16, 32, or 64 bits of precision,

fixed-point arithmetic allows for a larger scope for optimization.
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Sound Mixed Fixed-Point Quantization of Neural Networks 3

Optimizing mixed-precision fixed-point arithmetic efficiently and accurately is challenging

for two main reasons. First, fixed-point arithmetic is fundamentally discrete, and the continuous

abstractions that allow to use efficient continuous optimization techniques for floating-point

arithmetic [10] are not applicable. Secondly, due to the large choice (of combinations) of different

precisions for individual operations, the search space for quantization is enormous and heuristic

search techniques can explore this space only limitedly.

To overcome these challenges, we phrase sound fixed-point quantization of feed-forward neural

networks as a mixed integer linear programming (MILP) problem. A naive formulation, however,

results in non-linear constraints that are computationally intractable. We show how to use over-

approximations to relax the problem to linear constraints that are quickly solvable. Furthermore,

we leverage the special structure of NNs to efficiently, yet accurately to optimize the dot product

operations by building on an existing technique for their correctly rounded implementation [13].

We implement our approach in a prototype tool called Aster that we will release as open source.

Aster takes as input a trained neural network written in a small real-valued domain-specific

language, a specification of the possible inputs, and an error bound on the result, and outputs a

mixed fixed-point precision assignment that is guaranteed to satisfy the error bound (wrt. the real-

valued input) and to minimize a (customizable) cost function.

We evaluate Aster on NN embedded controller benchmarks used for verification from the

literature [22, 34, 40] and compare it with an existing sound quantizer [11]. Our results show

that Aster can generate feasible implementations for significantly more benchmarks. We also

show that for most of our benchmarks, Aster’s implementations take fewer machine cycles when

compiled by Xilinx Vivado HLS [52] for an FPGA. In addition, Aster is substantially faster, especially

for larger networks with thousands of parameters, with improvements in optimization time on

average of ∼ 67%.

Contributions. To summarize, in this paper we present:

(i) a novel MILP-based mixed fixed-point quantization approach that guarantees a given roundoff

error bound,

(ii) an experimental comparison against the state-of-the-art to demonstrate the effectiveness of

our approach on a benchmark set of neural network controllers, and

(iii) a prototype tool called Aster available on Zenodo: https://doi.org/10.5281/zenodo.8123416.

2 OVERVIEW AND BACKGROUND
Consider a unicycle model of a car [34] that models the dynamics of a car with 4 parameter

variables—the Cartesian coordinates (x, y), the speed, and the steering angle. We use a neural

network that was trained as a controller for this model as our initial example. It is a fully connected

feed-forward neural network with 1 hidden layer. The network is fed as input a 4-parameter vector,

denoted by 𝑥0 =
[
𝑥1
0

𝑥2
0

𝑥3
0

𝑥4
0

]
where each parameter is constrained by real-valued intervals:

𝑥1
0
∈ [−0.6, 9.55], 𝑥2

0
∈ [−4.5, 0.2], 𝑥3

0
∈ [−0.6, 2.11], and 𝑥4

0
∈ [−0.3, 1.51], each specifying valid

input values to the network. The inputs are propagated through each layer by successive application

of the dot product operations, bias additions and activation functions:

layer 1: 𝑥1 = 𝑅𝑒𝐿𝑈 (𝑊1 · 𝑥0 + 𝑏1) output: 𝑥2 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊2 · 𝑥1 + 𝑏2) (1)
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𝑥1 is the output of the first layer, which is then fed as input to the next, output layer. The output of

the overall network is 𝑥2. Each layer is parameterized by a weight matrix𝑊𝑖 and a bias vector 𝑏𝑖 :

𝑊1 =


−0.037 · · · 0.129

−0.003 · · · 0.099

−0.128 · · · 0.047

0.045 · · · −0.166

 , 𝑏1 =
[
0.028 · · · 0.342

]
, 𝑊2 =


0.052 0.137

· · · · · ·
−0.200 0.154

 , 𝑏2 =
[
0.273 0.304

]
While the network has only a single hidden layer, it has 500 neurons (elided above) and thus results

in a non-trivial size of the overall network.

To be deployed in a safety-critical system, such a neural network controller needs to be proven

safe before implementation, for instance, one may need to prove that the system reaches a set of

safe states within a given time window [34]. Since exact reasoning about finite-precision arithmetic

does not scale, existing verification techniques assume real-valued parameters and arithmetic oper-

ations for the network [27, 31, 49, 51], but can typically deal with bounded uncertainties, from the

implementation or measurements. We will thus assume that a bound on the output error 𝜖 is given.

As a controller is primarily executed on resource-constrained hardware, using floating-point arith-

metic may be overly expensive, as it requires either additional floating-point processor support or

slow software emulations. The alternative is to quantize the NN controller in fixed-point arithmetic.

Fixed-point Quantization. In a fixed-point implementation, all program variables and constants

are implemented using integers, and have an (implicit) representation <𝑄, 𝜋>, consisting of the

total word length 𝑄 ∈ N (overall number of bits including a sign bit), and the position of the

binary point 𝜋 ∈ N counting from the least significant bit. Arithmetic operations on fixed-point

variables can be implemented efficiently using only integer arithmetic and bit-shifting [3], or can

use equivalent efficient hardware implementations, e.g. on FPGAs. While fixed-point arithmetic is

not standardized, we employ the most commonly used fixed-point representation [55] and review

the parts relevant for our paper here.

This representation effectively divides the number of overall bits into an integer part 𝐼 = 𝑄−𝜋 −1,

and a fractional part 𝜋 . The integer part needs enough bits to ensure that it can hold large enough

values to not overflow, i.e. the range of representable numbers is [−2𝐼 , 2𝐼 ]. The fractional part

controls the precision of a variable or an operation—the larger the number of fractional bits, the

more precisely can the value be represented. Assuming that each operation uses truncation as the

rounding mode, the maximum roundoff error with 𝜋 fractional bits is 2
−𝜋

. In this paper, we use

truncation as the rounding mode as it is the most commonly used one (the default with circuit design

and synthesis compilers like Xilinx), and more efficient at runtime than e.g. rounding to nearest.

In our example (Equation 1), the input 𝑥1
0
is in the range [−0.6, 9.55]. The number of integer bits

required to hold this range, i.e. to represent the maximum absolute value 9.55 without overflow, is

5 (including the sign bit). Assuming 32 bits are available for wordlength (𝑄 = 32), then we have

(32 − 5) = 27 bits remaining for the fractional part. Hence, the maximum roundoff error for the

input is 2
−27

.

We need to assign each operation enough integer and fractional bits to guarantee overflow-
freedom and sufficient overall accuracy of the final result. To ensure that the overall roundoff error

does not exceed a given bound 𝜖 , we need to propagate and accumulate the errors of individual

operations, which in general happens in nontrivial ways and is challenging to do manually. At the

same time, we want to assign only as many bits as are actually needed to not waste resources.

Mixed-Precision Tuning. Using uniform fixed-point precision, i.e. the same word length for all

operations, can be suboptimal; if one precision is not enough even at a single point in the program,

we need to upgrade all operations to the next higher precision. However, not all layers necessarily
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Sound Mixed Fixed-Point Quantization of Neural Networks 5

have the same effect on the overall accuracy. Hence, it can be more resource-efficient to assign

different precisions (word lengths) to different operations to achieve a target error bound, and thus

implement the model in mixed precision.

Existing sound techniques applicable to fixed-point arithmetic rely on a heuristic search that

repeatedly evaluates roundoff errors for different precision assignments [11]. While this technique

works well for small programs, the repeated global roundoff error analysis quickly becomes expen-

sive as we show in our evaluation in Section 5. Moreover, these techniques are designed for general-

purpose straight-line programs, and do not take into account the structure of neural networks. To

apply existing tools, one needs to assign all weight matrix and bias vector elements to individual

scalar variables, and unroll all loops over these, resulting in an enormous straight-line expression.

For the unicycle example, only computing the roundoff error for a uniform 32-bit implementation

using the state-of-the-art tool Daisy [11] takes 5.91 minutes, and mixed-precision tuning of this

example takes more than 2.7 hours.

Our Approach. We encode fixed-point precision tuning as a mixed integer linear programming

(MILP) problem, and perform several over-approximations to generate a linearized problem from

the fundamentally nonlinear constraints (see Section 3). Our MILP constraints optimize the number

of fractional bits such that overflow-freedom is ensured even in the presence of errors and a cost

function is minimized. Our approach is parametric in the cost function to be optimized, but for the

purpose of evaluation we follow Daisy’s cost function and count the total number of bits needed.

Assuming 𝜖 = 0.001 as the error bound for the unicycle example, Aster with our MILP-based

mixed-precision tuning assigns different precisions (using 18, 19, 20, 21, 24, 30, and 34 bits) to

different variables, constants, and operations in just under 50 seconds (i.e. significantly less than

the 2.7 hours taken by Daisy). When compiled for an FPGA architecture with Xilinx’ Vivado HLS

tool, Aster’s generated code takes only 27 machine cycles to execute, whereas Daisy’s generated

code, both uniform and mixed-precision, take 178 cycles.

3 MILP-BASED MIXED-PRECISION TUNING
In this work we specifically focus on feed-forward neural networks with ‘relu’ and ‘linear’ activation

functions that solve regression problems and compute continuous outputs. Such networks may, for

instance, be utilized in closed-loop control systems, where they can be proven safe with different

techniques [27, 31, 49, 51] that typically assume real-valued arithmetic operations, inputs and

constants. Our objective is to minimize the resource usage of the implemented networks, while

preserving safety by ensuring that computed (control) outputs remain within a specified error

bound (that e.g. arises from a safety proof).

Problem Definition. Given a real-valued neural network architecture, ranges of inputs, and a

roundoff error bound at the output, the goal is to generate a fixed-point mixed-precision neural

network implementation that minimizes the precision of the variables and constants while ensur-

ing that the roundoff errors at the output remain within the specified bound.

Our approach is inspired by successful mixed-precision optimization techniques for floating-
point programs [10] that phrase precision tuning as an optimization problem (which it ultimately

is). They rely on the dynamic ranges of floating-point arithmetic that allows to bound floating-

point roundoff errors by nonlinear continuous abstractions, which, in turn, enables continuous,

purely real-valued optimization techniques for precision tuning.

However, such continuous techniques cannot be applied to fixed-point arithmetic programs,

because the ranges of individual operations need to be fixed at compile time, i.e. the number of

integer bits for each operation has to be determined for all possible inputs up-front. Hence, a
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continuous abstraction is not possible. Additionally, while floating-point arithmetic supports only

a small number of precisions (typically 16, 32, 64 bits), fixed-point arithmetic allows any number of

bits to be used for any operation and a more precise encoding is necessary to capture this.

We can capture different numbers of bits precisely by using integer constraints. However at
the same time, we also need to guarantee that a target error bound is satisfied, and this error is a

non-integer. Hence, we choose to encode fixed-point precision tuning as an Mixed-Integer Linear
Programming (MILP) problem [4]. In MILP, some decision variables are constrained to be integers,

and other variables can be real-valued. Integers allow us to directly encode the discrete decisions

about how many bits to use for operations, and real-valued constraints effectively express error

constraints.

The primary constraint of our optimization problem guarantees that the total roundoff error

remains inside the target error bound. At the same time, we also need to ensure no overflow.

Encoding these two conditions together would result in non-linearity because of the dot operations

in a neural network that perform multiplications. Unfortunately, only linear constraints can be

efficiently handled by state-of-the-art MILP solvers; nonlinear mixed integer arithmetic is in general

NP-hard, with non-convex problems being undecidable. Hence, we soundly over-approximate and

linearize constraints as and when necessary to make our solution efficient and feasible.

There are two primary sources of non-linearity in the optimization problem: 1) computation of

ranges of all arithmetic operations in order to ensure that there is no overflow, and 2) optimization

of fractional bits for all variables and constants to guarantee the error bound.

To avoid the first case, we pre-compute a sound over-approximation of real-valued ranges for all

operations efficiently using interval arithmetic (Section 3.1). From these we compute the integer

bits needed to represent the real-valued ranges. However, we still need to ensure that the finite-

precision ranges (real-valued ranges + roundoff errors) do not overflow. We encode this as a linear

range constraint in our optimization problem (Section 3.2.4), thus ensuring no overflow even in the

presence of errors.

For the latter, instead of optimizing for all intermediate variables and constants individually,

we treat the dot product as a single operation and encode only the assignment of the fractional

bits of the dot product results. However, to generate the implementation, we still need to assign

precisions to all intermediate variables and constants such that the roundoff errors in intermediate

computations do not affect the result. For this, we utilize existing techniques [6, 13] (discussed in

more detail in Section 3.3) to determine the number of fractional bits of the intermediate variables

in a dot product while guaranteeing an overall error bound.

Provided that the cost function is also linear, we can then encode the precision tuning problem

for neural networks with ReLU and linear activation functions with purely linear constraints that

can be solved efficiently by state-of-the-art MILP solvers. Other activation functions like sigmoid

need to be linearized first before encoding them into our MILP based quantization method. As an

additional performance optimization, we consider uniform bit lengths for the operations within

each individual layer. That is, within one layer, all dot products will be assigned the same bit length

(and similarly for bias and activations), but the bit lengths will vary from layer to layer. This choice

is to limit the number of the constraints, but it is not a fundamental limitation of our approach.

Overall, our technique consists of three steps:

(1) computing the integer bits of program variables using interval arithmetic,

(2) optimizing the fractional bits of dot, bias, and activation operations by reducing it toMILP, and

(3) computing the precision of all constants and intermediate variables in dot products.

Our tool Aster performs all these steps fully automatically. We will explain each of these steps

in detail next. Though Aster is primarily designed for continuous feed-forward neural network
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[
𝑥1
1

𝑥2
1

]
= 𝑅𝑒𝐿𝑈

( [
0.1 0.2

0.2 0.15

]
︸        ︷︷        ︸

𝑊1

·
[
𝑥1
0

𝑥2
0

]
+

[
1.0

2.0

]
︸︷︷︸

𝑏1

)
, 𝑥2 = 𝐿𝑖𝑛𝑒𝑎𝑟

( [
0.1 0.2

]︸      ︷︷      ︸
𝑊2

·
[
𝑥1
1

𝑥2
1

]
+

[
0.5

]︸︷︷︸
𝑏2

)
(2)

Fig. 1. Running example for MILP modeling

controllers, our proposed approach can be extended to other types of neural networks that have

sparse matrices and activation functions that can be piece-wise linearized [54].

Running Example. We will illustrate our approach using the following small (artificial) neural

network in Figure 1 as our running example: The input to the network is a vector 𝑥0 consisting of

2 elements, whose ranges are provided by the user: 𝑥1
0
= [−10, 10] and 𝑥2

0
= [−5, 5]. The neural

network produces a single output 𝑥2. To generate an implementation of the network, the user needs

to provide the network architecture (i.e. the weight matrices and bias vectors, as well as activation

functions for each layer) as input to Aster. Additionally, the user specifies the precision of the input

and if the input is represented exactly, which incurs no roundoff error in the input. The precision

of inputs is typically known from the specification of sensors or similar in the context of embedded

systems, but our approach also supports inputs with initial roundoff errors.

Assume, for the running example, the inputs are exactly represented with 10 bits. The input

specification implies that 5 bits are required to represent the maximum absolute value of the ranges,

which is 10, leaving 5 bits for the fractional part of the inputs, with no initial roundoff error. The

goal is to generate a quantized mixed-precision implementation of the NN such that its cost is

minimized and the output error is bounded by a user-specified target error 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 = 0.1.

3.1 Step 1: Computing Integer Bits
Aster starts by computing the integer bits for all program variables and constants using a forward

data-flow analysis that tracks the real-valued ranges at each abstract syntax tree (AST) node. For

this purpose Aster utilizes the widely used and efficient interval arithmetic [42] that computes

intervals for each basic arithmetic operation and the activation functions as follows:

𝑥 • 𝑦 = [min(𝑥 • 𝑦), max(𝑥 • 𝑦)], where • ∈ {+,−, ∗, /}
𝑅𝑒𝐿𝑈 (𝑥) = [max(𝑙𝑜, 0), max(ℎ𝑖, 0)], 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑥) = [𝑙𝑜, ℎ𝑖]

Here 𝑙𝑜 and ℎ𝑖 denote the lower and upper bounds of the interval of 𝑥 , respectively. With 𝑅𝑒𝐿𝑈 ,

the resulting interval is the same as 𝑥 ’s directly if both 𝑙𝑜 and ℎ𝑖 are positive; otherwise, it returns

0 for the negative part. After applying the 𝑙𝑖𝑛𝑒𝑎𝑟 activation, the interval is the same as the input 𝑥 .

Given the initial ranges of the inputs, Aster uses interval arithmetic to propagate the intervals

through the program and computes an interval for all variables, constants, and intermediate results

that soundly over-approximates the real-valued ranges. Finally, Aster uses a function intBits 1

that computes, in the two’s complement binary representation, the number of integer bits needed

for these real-valued ranges such that all possible values can be represented without overflow.

In principle, the finite-precision ranges, i.e. real-valued ranges with roundoff errors, may need

more integer bits to be represented than the real-valued ranges alone. However, as the errors are

usually small, they typically do not affect the integer bits in practice and are thus a good estimate.

In addition to this, our MILP constraints (detailed next) ensure that these initial estimates of the

integer bits are sufficient to avoid overflow, i.e. these estimates only need to be good approximations.

1intBit(x) = binary(abs(x).integerPart).numOfDigits, where it converts the integer part of x into 2’s complement

binary representation and then determines the number of digits in the binary representation.
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type variables definitions

user inputs 𝑘𝑖 number of neurons at layer 𝑖

𝑄𝑊𝑖
word length of maximum weight at layer 𝑖

𝑄𝑥0 maximum word length of inputs

𝑙𝑜 lower bound on fractional bits 𝜋

ℎ𝑖 upper bound on fractional bits 𝜋

pre-computed inputs 𝑅
𝑜𝑝

𝑖
real-valued ranges of operation 𝑜𝑝 at layer 𝑖

𝐼
𝑜𝑝

𝑖
number of integer bits of the finite-precision range of operation 𝑜𝑝 at layer 𝑖

𝐴
𝑜𝑝

𝑖
maximum representable ranges of operation 𝑜𝑝 without overflow at layer 𝑖

decision variables 𝜖
𝑝𝑟𝑜𝑝

𝑖
propagation error at layer 𝑖

𝜖𝑛𝑒𝑤
𝑖

new roundoff error at layer 𝑖

𝛾
𝑜𝑝

𝑖
cost of an operation 𝑜𝑝 at layer 𝑖

𝜋
𝑜𝑝

𝑖
number of fractional bits of 𝑜𝑝 at layer 𝑖

other variables 𝑏
𝑜𝑝

𝑖
indicator variable for operation 𝑜𝑝 at layer 𝑖

𝑜𝑝𝑡
𝑜𝑝

𝑖
optimal variable for 𝜋𝑜𝑝

at layer 𝑖

Table 1. Variable notations (𝑜𝑝 : dot product / bias addition / activation function)

These integer bits are later added with the fractional bits to compute the total word length required

to represent each program variable and constant.

For our running example in Figure 1, given the input ranges, Aster computes the real-valued

ranges of the first layer as [-3, 3], and [-5, 5] after the dot operation and the bias addition, respectively.

From this, Aster determines that 3 and 4 integer bits are needed to represent the signed integer

part of the dot operation and bias addition, respectively, at layer 1. It analogously computes the

integer bits for all operations in all layers.

3.2 Step 2: Optimizing Fractional Bits
Next, we reduce the problem of computing the fractional bits of dot product results, the addition of

bias, and the activation functions to a mixed integer linear programming problem. We first provide

an overview of the relevant variables that we will use to formulate our MILP problem in Table 1.

The variables specific to a layer 𝑖 are referenced along with the subscript 𝑖 , and 𝑜𝑝 can denote the

dot product, the bias addition, or the activation function.

User inputs: The variable 𝑘𝑖 , that denotes the number of neurons at layer 𝑖 , is deduced by Aster

from the neural network given by the user. The remaining values are directly provided by the

user. The variables 𝑄𝑊𝑖
and 𝑄𝑥0 denote the word length of the maximum weight and the largest

input from the input vector 𝑥 . The input word length is used as is, however, the word lengths of

maximum weights are required in the beginning only to make the optimization problem linear. We

later deduce these word lengths automatically considering the result’s precision of the dot product,

which we will explain in Section 3.3. The user additionally specifies a range for the fractional bits

[𝑙𝑜, ℎ𝑖] (one for all operations and layers) that will be considered during optimization.

Pre-computed inputs: The values of these variables are pre-computed by the first step. 𝑅
𝑜𝑝

𝑖
and

𝐼
𝑜𝑝

𝑖
denote the real-valued range and the number of integer bits required for the finite-precision

range of each operation 𝑜𝑝 at layer 𝑖 . 𝐴
𝑜𝑝

𝑖
denotes the maximum representable range of each

operation 𝑜𝑝 without overflow at layer 𝑖 .

Decision variables: The decision variables are those for which the MILP problem will be solved.

The variables 𝜖
𝑝𝑟𝑜𝑝

𝑖
and 𝜖𝑛𝑒𝑤

𝑖
are the error variables representing the propagation error and newly

introduced error at layer 𝑖 . These variables constitute the error constraint. 𝛾
𝑜𝑝

𝑖
represents the cost

of each operation 𝑜𝑝 at layer 𝑖 where 𝑜𝑝 ranges over dot, bias and activation function, and is used
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minimize: 𝛾 =

𝑛∑︁
𝑖=1

𝛾𝑑𝑜𝑡𝑖 + 𝛾𝑏𝑖𝑎𝑠𝑖 + 𝛾𝛼𝑖

where, 𝛾𝑑𝑜𝑡𝑖 = 𝑘𝑖∗𝑘𝑖−1 ∗𝑄𝑊𝑖
∗ 𝜋𝑑𝑜𝑡

𝑖 , 𝛾𝑏𝑖𝑎𝑠𝑖 = max

(
𝜋𝑑𝑜𝑡
𝑖 , 𝜋𝑏𝑖𝑎𝑠𝑖

)
, 𝛾𝛼

𝑖
= 𝜋𝑏𝑖𝑎𝑠

𝑖

subject to:

𝐶1 (error) : 𝜖𝑛 =

𝑛∑︁
𝑖=1

(𝜖𝑝𝑟𝑜𝑝
𝑖

+ 𝜖𝑛𝑒𝑤𝑖 ) ≤ 𝜖𝑡𝑎𝑟𝑔𝑒𝑡

where, 𝜖
𝑝𝑟𝑜𝑝

𝑖
≤ 2

−𝜋0 , when 𝑖 = 1

=

(
max

𝑘𝑖
𝑗=1

𝑘𝑖−1∑︁
𝑙=1

𝑊𝑖, 𝑗𝑙

)
∗ 𝜖𝑖−1, when 𝑖 > 1

𝜖𝑛𝑒𝑤
𝑖

≤ 2
−𝜋𝑑𝑜𝑡

𝑖 + 2
−𝜋𝑏𝑖𝑎𝑠

𝑖

𝐶2 (range) :
∀𝑖 ∈ 𝑛, 𝐴𝑑𝑜𝑡

𝑖 ≥ 𝑅𝑑𝑜𝑡𝑖 + 𝜖
𝑝𝑟𝑜𝑝

𝑖
+ 𝜖𝑑𝑜𝑡𝑖

∀𝑖 ∈ 𝑛, 𝐴𝑏𝑖𝑎𝑠
𝑖 ≥ 𝑅𝑏𝑖𝑎𝑠𝑖 + 𝜖𝑖

Fig. 2. The MILP formulation with non-linear constraints

to formulate the objective function. The variables 𝜋
𝑜𝑝

𝑖
denote the fractional bits of all operations at

layer 𝑖 .

Other variables: The other variables are used internally by Aster to linearize non-linear con-

straints (without over-approximations). The indicator variables are used to select the optimized

fractional bit length and the optimal variables are used to store the corresponding errors. We ex-

plain these variables in more detail in Section 3.2.5.

3.2.1 Problem Formulation. Our objective is to minimize a cost (function 𝛾 ) subject to error and

range constraints denoted by 𝐶1 and 𝐶2, where the constraints ensure that the user-provided error

bound is respected and that no overflow occurs, respectively. Figure 2 presents the overall formula-

tion of the MILP constraints for optimizing fractional bits. We provide a detailed explanation of

each constraint; we emphasize the references to individual constraints in Figure 2 using underlines.

3.2.2 Cost Function. In each layer, there are three operations: first the dot product is computed,

then the bias vector is added, and finally, an activation function is applied. We compute the costs of

these operations individually and add them up to compute the total cost of each layer. The total

cost over all layers is then computed by adding up the costs of 𝑛 layers (see 𝛾 in Figure 2).

This cost function closely follows previous work [33] and computes the total number of bits

needed to implement the neural network. Our approach supports other cost functions, e.g. capturing

performance or energy, as long as they can be expressed as linear expressions. Since the latter are

highly hardware dependent, we implement the cost function used in previous work.

The cost of the dot operation at layer 𝑖 , denoted by 𝛾𝑑𝑜𝑡𝑖 , depends on the number of inputs 𝑘𝑖−1,
the number of neurons 𝑘𝑖 , and the weight matrix𝑊𝑖 of the layer. The dot product at layer 𝑖 is

defined by expanding it into multiplications and additions of the weights and inputs and adding

them for all 𝑘𝑖 neurons of the layer: 𝑑𝑜𝑡𝑖 =
∑𝑘𝑖

𝑗=1

(∑𝑘𝑖−1
𝑙=1

𝑊𝑖, 𝑗𝑙 × 𝑥𝑖,𝑙

)
.

Recall that our approach takes as input the maximum word length of the weights 𝑄𝑊𝑖
for each

layer. With the 𝑄𝑊𝑖
and the fractional bits of the dot product 𝜋𝑑𝑜𝑡

𝑖 (decision variable), we can over-

approximate the total cost of the dot operation at layer 𝑖 by multiplying it with 𝑄𝑊𝑖
, the number of

neurons of the previous layer (𝑘𝑖−1) and the current layer (𝑘𝑖 ) (𝛾𝑑𝑜𝑡𝑖 in Figure 2). For the first layer,
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10 Lohar et al.

instead of 𝑘𝑖−1 we consider the number of input variables. Note that we only use an estimate of

the maximum word length of𝑊 , as the actual word lengths of𝑊 are not known beforehand, and

defining them as variables makes the cost non-linear. We later assign precisions for𝑊 from the

solutions of the MILP problem, which we explain in Section 3.3.

As the bias vector is only added with the result of the dot product, the cost of this addition

denoted as 𝛾𝑏𝑖𝑎𝑠𝑖 is the maximum of the fractional bits of the result of the addition and fractional

bits of the dot operation (𝛾𝑏𝑖𝑎𝑠𝑖 in Figure 2). Technically, the ‘max’ function is also non-linear. We

show how to linearize this function in Section 3.2.5.

Finally, the cost of the activation is a function of 𝜋𝑏𝑖𝑎𝑠
𝑖 . We assume ReLU and linear activation

functions for the networks. As these two activation functions are linear functions of 𝜋𝑏𝑖𝑎𝑠
𝑖 , the cost

is the same as 𝜋𝑏𝑖𝑎𝑠
𝑖 (𝛾𝛼

𝑖
in Figure 2).

Let us assume for our running example in Figure 1 that𝑄𝑊 = 8 for both layers. The network has

2 input variables, 2 neurons in the first layer and 1 neuron in the output layer. With our formulation,

the cost of the whole network is defined as:

(2 ∗ 2 ∗ 8 ∗ 𝜋𝑑𝑜𝑡
1

) +max(𝜋𝑑𝑜𝑡
1

, 𝜋𝑏𝑖𝑎𝑠
1

) + 𝜋𝑏𝑖𝑎𝑠
1︸                                                    ︷︷                                                    ︸

layer1

+ (2 ∗ 1 ∗ 8 ∗ 𝜋𝑑𝑜𝑡
2

) +max(𝜋𝑑𝑜𝑡
2

, 𝜋𝑏𝑖𝑎𝑠
2

) + 𝜋𝑏𝑖𝑎𝑠
2︸                                                    ︷︷                                                    ︸

output

3.2.3 Error Constraint. The error constraint 𝐶1 in Figure 2 states that the overall roundoff error of

the full network 𝜖𝑛 needs to be bounded by the user specified error 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 . For this constraint, we

need to express the roundoff error as a function of the precisions of individual operations.

To compute the roundoff error at each layer 𝑖 , we need to track the propagated error 𝜖𝑝𝑟𝑜𝑝
𝑖

from

the previous layer and compute the new roundoff error 𝜖𝑛𝑒𝑤
𝑖

committed by the operations at layer 𝑖 .

The total roundoff error 𝜖𝑛 is then defined as the sum of all the errors at all layers.

The initial error 𝜖0 is considered as the propagated error at layer 1. This error 𝜖0 is bounded by

the function of fractional bits of inputs (𝜖
𝑝𝑟𝑜𝑝

1
in Figure 2) that is determined by the word length of

the inputs 𝑄𝑥0 and the integer bits needed to represent the range of the inputs 𝑅𝑥0 computed using

the intBits function: 𝜋0 = 𝑄𝑥0 − intBits(𝑅𝑥0 ).
The propagation error at layer > 1 depends on the errors from previous layers as well as the

absolute magnitudes of the weights (a weight that is bigger than one will magnify an existing error).

Thus, the propagation error 𝜖
𝑝𝑟𝑜𝑝

𝑖
for layer > 1 is defined as the error at the previous layer 𝜖𝑖−1

multiplied by the sums of the absolute weights of each neurons. In practice, we sum the absolute

weights of each neuron (absolute sum over the number of inputs 𝑘𝑖−1) and take the maximum result

as a factor to amplify the propagation error (maximum over the number of neurons 𝑘𝑖 ) (see 𝜖
𝑝𝑟𝑜𝑝

𝑖

in Figure 2).

This is a sound over-approximation of the total propagated error as we assume the maximum

magnification of errors for all neurons in the previous layer. For this constraint, Aster computes

the maximum values of the weights over the neurons for each layer beforehand and uses them as

constants in the optimization problem, thus preserving linearity.

The new roundoff error at layer 𝑖 is defined as the sum of the errors for the activation function,

for the dot computation and the bias addition. The ReLU activation function (𝛼 (𝑥) = max(0, 𝑥))
and the Linear activation function (𝛼 (𝑥) = 𝑥 ) do not affect the error. Thus the new error is bounded

by 2
−𝜋𝑑𝑜𝑡

𝑖 and 2
−𝜋𝑏𝑖𝑎𝑠

𝑖 , where 𝜋𝑑𝑜𝑡
𝑖 = 𝑄𝑑𝑜𝑡

𝑖 − 𝐼𝑑𝑜𝑡𝑖 and 𝜋𝑏𝑖𝑎𝑠
𝑖 = 𝑄𝑏𝑖𝑎𝑠

𝑖 − 𝐼𝑏𝑖𝑎𝑠𝑖 . For the dot and bias

operation, the error is computed considering the fractional bits of these operations.

This error constraint is non-linear (2
−𝜋𝑜𝑝

𝑖 ). We linearize the error constraint for the optimization

exactly by considering the user-provided range [𝑙𝑜, ℎ𝑖] for 𝜋𝑜𝑝

𝑖
. We explain the linearization process

in Section 3.2.5. We also assume a roundoff error on the result of the dot product only, and do

not account for the roundoff errors of the individual operations of the dot product in our MILP
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constraints. We do this to avoid nonlinearity in the constraints, and rely on the fact that the dot

product can be computed with faithful rounding up to the chosen format using the technique from

de Dinechin et.al. [13]. We explain the details of computing the intermediate formats in Section 3.3.

Let us derive the error constraint for our running example in Figure 1. We considered no input

error here: 𝜖0 = 0.0. We first compute the total error in layer 1. This error is then considered as the

propagated error for the output layer by magnifying it with the maximum absolute sum of weights:

max ((0.1 + 0.2), (0.2 + 0.15)) = 0.35. Thus the overall error constraint is (assuming 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 = 0.1):

(2−𝜋𝑑𝑜𝑡
1 + 2

−𝜋𝑏𝑖𝑎𝑠
1 ) ∗ 0.35 + (2−𝜋𝑑𝑜𝑡

2 + 2
−𝜋𝑏𝑖𝑎𝑠

2 ) ≤ 0.1.

3.2.4 Range Constraint. As we have only considered the real-valued ranges to compute the integer

bits of the variables and constants in the first phase, we need to ensure that the finite ranges after

each operation in each layer do not overflow. Our hypothesis is that the roundoff errors are small

enough to keep the integer bits unaffected. Accordingly, in our range constraint 𝐶2 in Figure 2,

we want to ensure that the number of integer bits required to represent the finite-precision range

after each operation 𝐼
𝑜𝑝

𝑖
is enough to store the integer bits of the finite-precision result (real-valued

ranges together with the roundoff errors).

However, directly implementing this constraint would result in applying the function intBits
on error decision variables, which is non-linear. Hence, we reduce the problem of computing

the integer bits to ensuring the ranges of the finite-precision result remains inside the maximum

representable range (𝐴
𝑜𝑝

𝑖
) with the integer bits of the real-ranges after every operation at layer 𝑖 .

We pre-compute the integer bits required for the real-valued result, and use them to generate the

maximum representable range after each operation. For the dot operation, we have the propagation

errors 𝜖
𝑝𝑟𝑜𝑝

𝑖
from the previous layer and the operation itself introduces the new roundoff error

𝜖𝑑𝑜𝑡𝑖 . Hence, after the dot operation, the finite range includes these two errors. For bias addition,

however, we have the error from the dot operation as propagated error along with the new roundoff

error 𝜖𝑏𝑖𝑎𝑠𝑖 introduced by the addition. The total error after the bias addition is essentially the total

error 𝜖𝑖 of the layer 𝑖 as the activation error is zero for ReLU and Linear functions.

𝐶
0(1) : 𝛾

𝑏𝑖𝑎𝑠
𝑖

≥ 𝜋𝑑𝑜𝑡
𝑖

𝐶
0(2) : 𝛾

𝑏𝑖𝑎𝑠
𝑖

≥ 𝜋𝑏𝑖𝑎𝑠
𝑖

𝐶
1(1) : 𝑜𝑝𝑡

𝑑𝑜𝑡
𝑖

=

𝑚∑︁
𝑗=1

(𝑇𝑗 × 𝑏𝑑𝑜𝑡𝑗 )

𝐶
1(2) : 𝑜𝑝𝑡

𝑏𝑖𝑎𝑠
𝑖

=

𝑚∑︁
𝑗=1

(𝑇𝑗 × 𝑏𝑏𝑖𝑎𝑠𝑗 )

𝐶
1(3) :

𝑚∑︁
𝑗=1

𝑏𝑑𝑜𝑡𝑗 = 1

𝐶
1(4) :

𝑚∑︁
𝑗=1

𝑏𝑏𝑖𝑎𝑠𝑗 = 1

𝐶
1(5) : 𝜖

𝑛𝑒𝑤
𝑖

≤ 𝑜𝑝𝑡𝑑𝑜𝑡
𝑖

+ 𝑜𝑝𝑡𝑏𝑖𝑎𝑠
𝑖

Fig. 3. The linearization constraints

Let us consider our running example in Figure 1. As

there is no initial error, for the first layer we simply add

the roundoff error committed by the dot operation. For

the bias, we add roundoff error for both the dot and the

bias operation. The range constraints for the first layer

is thus: [−4.0, 4.0] ≥ [−3.0, 3.0] + 𝜖𝑑𝑜𝑡
1

and [−8.0, 8.0] ≥
[−3.0, 6.0] + 𝜖𝑑𝑜𝑡

1
+ 𝜖𝑏𝑖𝑎𝑠

1
. Similarly, we generate range

constraints for all the layers. Given the user inputs, our

prototype tool Aster automatically encodes the objective

cost function, the error and range constraints for the

optimization problem.

3.2.5 Linearization of Constraints. However, we still

have nonlinearity in the objective cost function which in-

cludes the nonlinear function max. The error constraints
are also nonlinear in terms of the number of unknown

fractional bits (𝜋 ).

Hence, we linearize these constraints exactly without

introducing any approximation. Figure 3 presents our linearization constraints for the optimization.

Linearization of the cost objective is straight-forward. The max function of two variables 𝜋𝑑𝑜𝑡
𝑖 and

𝜋𝑏𝑖𝑎𝑠
𝑖 (as shown in Figure 2) in the form 𝛾𝑏𝑖𝑎𝑠𝑖 = max(𝜋𝑑𝑜𝑡

𝑖 , 𝜋𝑏𝑖𝑎𝑠𝑖 ) can always be divided into a set
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of two linear constraints such that 𝛾𝑏𝑖𝑎𝑠𝑖 is always bigger than or equal to all values of both 𝜋𝑑𝑜𝑡
𝑖

and 𝜋𝑏𝑖𝑎𝑠
𝑖 . We utilize this argument to linearize our max function as 𝐶0(1−2) in Figure 3.

Linearizing the error constraint is however more tricky. To linearize the error constraint, we

use indicator constraints [7]. The nonlinear error constraint is defined in Figure 2 as: 𝜖𝑛𝑒𝑤
𝑖

≤
2
−𝜋𝑑𝑜𝑡

𝑖 +2−𝜋𝑏𝑖𝑎𝑠
𝑖 where 𝜋𝑑𝑜𝑡

𝑖 and 𝜋𝑏𝑖𝑎𝑠
𝑖 are unknown integers in an user-provided integer range [𝑙𝑜, ℎ𝑖].

Recall that, we want to compute the values of 𝜋𝑑𝑜𝑡
𝑖 and 𝜋𝑏𝑖𝑎𝑠

𝑖 that minimize our objective function.

As we already know the integer ranges of the variables, the possible values for 𝜋𝑑𝑜𝑡
𝑖 and 𝜋𝑏𝑖𝑎𝑠

𝑖

become finite (𝑚) as they are exactly the same as the number of integers in the given range. With

these𝑚 values, we define a set of𝑚 discrete reals that represent the set of possible values of 2
−𝜋𝑑𝑜𝑡

𝑖

and 2
−𝜋𝑏𝑖𝑎𝑠

𝑖 : 𝑇 = [2−ℎ𝑖 , 2−(ℎ𝑖−1) , · · · , 2−𝑙𝑜 ].
We introduce𝑚 binary indicator variables 𝑏𝑑𝑜𝑡 and 𝑏𝑏𝑖𝑎𝑠 for each valuation of 2

−𝜋𝑑𝑜𝑡
𝑖 and 2

−𝜋𝑏𝑖𝑎𝑠
𝑖

within the specified range. Intuitively, the indicator variables select only one specific value from

the list 𝑇 . We formulate two indicator constraints 𝐶1(1−2) for each layer 𝑖 as presented in Figure 3.

The constraints 𝐶1(1−2) select the values of 𝜋
𝑑𝑜𝑡
𝑖 and 𝜋𝑏𝑖𝑎𝑠

𝑖 that are optimal (𝑜𝑝𝑡𝑑𝑜𝑡𝑖 and 𝑜𝑝𝑡𝑏𝑖𝑎𝑠𝑖 )

respectively. They also state that if 𝑏𝑑𝑜𝑡𝑗 (or 𝑏𝑏𝑖𝑎𝑠𝑗 ) is true, we select the value 2
−(ℎ𝑖− 𝑗−1)

from the list

𝑇 for 𝑜𝑝𝑡𝑑𝑜𝑡𝑖 (or 𝑜𝑝𝑡𝑏𝑖𝑎𝑠𝑖 ). Obviously, we want only one of the 𝑏𝑑𝑜𝑡𝑗 (or 𝑏𝑏𝑖𝑎𝑠𝑗 ) to be true. Hence, we

add another two constraints 𝐶1(3−4) in Figure 3 to enforce that only one of these binary indicator

variables is true. With these new indicator variables and constraints, finally, we linearize the

original nonlinear error constraint 𝜖𝑛𝑒𝑤
𝑖

in Figure 2 as 𝐶1(5) in Figure 3. Our tool Aster encodes

these linearization constraints for all layers fully automatically.

Let us assume for our running example in Figure 1 that the range is provided as [𝑙𝑜, ℎ𝑖] = [4, 8]
which makes the possible values for 𝜋𝑑𝑜𝑡

𝑖 and 𝜋𝑏𝑖𝑎𝑠
𝑖 : 𝑇 = [2−8, 2−7, 2−6, 2−5,

2
−4]. Next, we define 5 binary indicator variables for 𝑏𝑑𝑜𝑡 and 𝑏𝑏𝑖𝑎𝑠 each. The indicator constraints

for dot product in the 1st layer are as follows: 𝑜𝑝𝑡𝑑𝑜𝑡
1

=
∑

8

𝑗=4 2
− 𝑗 ×𝑏𝑑𝑜𝑡𝑗 and

∑
8

𝑗=4 𝑏
𝑑𝑜𝑡
𝑗 = 1. Similarly

we have indicator constraints for bias. If the solver picks 𝑏𝑑𝑜𝑡
7

= 1 and 𝑏𝑏𝑖𝑎𝑠
8

= 1, the corresponding

new error is then bounded by 2
−7 + 2

−8
, and the optimized fractional bit lengths of dot and bias are

7 and 8, respectively.

3.3 Step 3: Correctly Rounded Precision Assignment
After solving the MILP, we obtain the fractional bits required for the dot operation and the addition

of bias, and we know that the integer bits from the first phase are enough to prevent overflow even

in the presence of errors. However, the fractional bits computed for the dot product only apply

to the result of the dot operation. To generate a complete executable fixed-point implementation,

we must also compute the precision of the intermediate operations (sum of products of the dot)

and the constants of weights. In particular, we need to determine their fractional bits such that the

results are rounded correctly up to the precision determined by the MILP.

Our algorithm to compute the intermediate and constant word lengths is based on the fixed-

point sum of products by constants (SOPC) algorithm [6, 13]. We first compute the fractional bits

for the intermediate computation of dot. Assume 𝑥 to be a vector of 𝑝 fixed-point variables in

formats (𝐼𝑥𝑖 , 𝜋𝑥𝑖 ) and 𝑐 be a vector of 𝑝 fixed-point constants in formats (𝐼𝑐𝑖 , 𝜋𝑐𝑖 ) where 𝐼 denotes
the integer bits. Our goal is to compute 𝑦 =

∑𝑝

𝑖=1
𝑐𝑖 · 𝑥𝑖 correctly.

The integer bits of the output 𝐼𝑦 are already computed in the first step, such that no overflow

occurs. The fractional bits of the output 𝜋𝑦 are determined by MILP in the second step. These two

combined represent the output precision and an accuracy requirement which ensures that the

roundoff error is bounded by 2
−𝜋𝑦

.
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As it was shown in [13], if the integer bits of output 𝐼𝑦 guarantee no overflow, and partial products

𝑠𝑖 = 𝑐𝑖 · 𝑥𝑖 are performed exactly, then performing the summation in an extended format (𝐼𝑦, 𝜋𝑒𝑥𝑡 )
guarantees the output error bound. The number of extended fractional bits depends on the number

of terms that need to be added: 𝜋𝑒𝑥𝑡 = 𝜋𝑦 + ⌈log
2
𝑝⌉ + 1. Note that the integer bit positions for

the intermediate results are not changed, which might lead to overflows in partial sums during

the computation of the dot product. However, because of the properties of 2’s complement, these

overflows do not influence the result accuracy as long as the output is representable with the output

integer bit 𝐼𝑦 [6].

Next, we must obtain the fractional bits of the weight constants (𝑤𝑖 ∈𝑊 ) such that the error

bound holds. As we have mentioned before, the intermediate results of the partial sums needs to be

done with 𝜋ext fractional bits to ensure correct rounding. Now, in order to ensure that the accuracy

of the product𝑤𝑖 × 𝑥𝑖 is up to 𝜋ext, the following property needs to hold: 𝜋𝑤𝑖
+ 𝐼𝑥𝑖 ≤ 𝜋ext, which

implies that the 𝜋𝑤𝑖
needs to be at least 𝜋ext + 𝐼𝑥𝑖 .

Finally, the result of the dot product is added with the bias vector. From the MILP we obtained the

fractional bit of the result of the addition 𝜋𝑏𝑖𝑎𝑠
. We need to compute the fractional bits of the bias

constants (𝑏𝑖 ∈ 𝑏). To ensure that the roundoff error at result is bounded by 2
−𝜋𝑏𝑖𝑎𝑠

, the fractional

bits of 𝑏𝑖 is set to be 𝜋𝑏𝑖𝑎𝑠
. As the formats of the operands might differ, we set the format of the

bias upfront to ensure 𝜋𝑏𝑖𝑎𝑠
fractional bits in the result.

3.4 Soundness
THEOREM. Given a set of input ranges R and a specified error bound 𝜖target for a neural network, if
the MILP-based mixed-precision optimization terminates successfully, it returns a fixed-point precision
assignment for the network such that for all inputs 𝑖 ∈ R, the maximum roundoff error 𝜖𝑛 of the
network (relative to a real-valued implementation) does not exceed 𝜖target, i.e., 𝜖𝑛 ≤ 𝜖target.

Proof Sketch. Our MILP-based mixed-precision tuning procedure guarantees soundness by

construction. We summarize the correctness argument for each of the three steps.

The first step employs sound interval arithmetic [42] to compute the integer bits of all program

variables and constants, including intermediate ones. This computation proves the absence of

overflow, ensuring that the resulting integer bits are valid and consistent.

The second step assigns the fractional bits of the dot and bias results as the solution of an MILP

optimization problem, which bounds the overall roundoff error to be below the user-given error

bound. The MILP error constraints soundly over-approximate the true roundoff errors (by assuming

worst-case errors and error propagation at each step), and the range constraints ensure that no

overflow is introduced due to roundoff errors. The linearization constraints are exact and maintain

the soundness of the MILP encoding.

The third and final step assigns precisions to the intermediate variables that store the sum of

products of the dot and the weight constants. This is achieved by utilizing the previously determined

sound integer bits from the first step and following the fixed-point sum of products by constants

(SOPC) algorithm. The correctness of the SOPC algorithm directly follows from [6].

Together, these steps assign both the integer and the fractional bits of all variables, constants

and operations such that no overflow occurs and the overall error bound is satisfied. □

4 IMPLEMENTATION
Our tool Aster takes as input the network architecture and specification written in a small

domain-specific language. The input corresponding to our running example from Figure 1 is shown

in Figure 4. The ‘require’ clause specifies the input ranges, and the ‘ensuring’ clause specifies the
overall error bound. In addition, Aster takes the maximum fractional bit length of the input vector,
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1 def runningExample(x:Vector): Vector = {

2 require(lowerBounds(x, List(-10, -5)) && upperBounds(x, List(10, 5)))

3 val weights1 = Matrix(List(List (0.1, 0.2), List (0.2, 0.15)))

4 val weights2 = Matrix(List(List (0.1, 0.2)))

5 val bias1 = Vector(List (1.0, 2.0))

6 val bias2 = Vector(List (0.5))

7 val layer1 = relu(weights1 * x + bias1)

8 val layer2 = linear(weights2 * layer1 + bias2)

9 layer2

10 } ensuring(res => res +/- 0.1)

Fig. 4. Network architecture in Aster’s input format

the word length of maximum weights, and the range of the fractional bits for the optimization

as command-line user inputs. As explained in Section 3.2, we need these values to make the

optimization problem linear.

Note that we have implemented Aster to handle feed-forward NNs with relu and linear
activations fully automatically; however, Aster can straightforwardly be extended to handle neural

networks with sparsematrixmultiplication, and piece-wise linear activation functions with bounded

domains.

Aster generates fully quantized code including (more) accurate precisions for the weights written

in C using the ap_fixed library. This code can directly be compiled for an FPGA with the state-of-

the-art HLS compiler by Xilinx [52]. Aster’s generated code either expresses the matrix operations

as for-loops, or alternatively it can fully unroll these loops.

Integer Bit Computation. We observed that a straight-forward interval analysis computation of the

real-valued ranges quickly becomes expensive with increasing complexity of the network. We thus

leverage the structure of the neural network for a more efficient, though over-approximate range

analysis. Specifically, we abstract the input variables to each layer by a single range that soundly

covers all individual variables, and do so similarly for the weights and biases at each layer. Doing so,

we can compute the output range of a layer by computing a single dot product with one addition. This

over-approximation makes the interval analysis scalable even for large networks with thousands

of parameters, while we have not observed it to significantly effect the optimization results.

Choice of MILP Solver. For our fixed-point precision optimization, the values we encounter can be

very small, e.g. for fixed 32 bit precision the roundoff errors are on the order of 1e-9. State-of-the-

art MILP solvers use finite precision internally as well, and it is thus crucial to choose a solver that

is precise enough to be able to distinguish its own internal roundoff errors from the values in our

constraints. We integrate Aster with the SCIP optimization Suite [20] with the underlying SoPlex

solver to solve our mixed-integer linear problem. SCIP internally uses extended-precision which

goes beyond the limits of floating-point arithmetic, and thus allows us to deal with values as small

as 1e-15. We found that other widely-used industrial solvers (such as CPLEX [29] and Gurobi [24])

have tolerances that are bounded by 1e-6. These are unfortunately too coarse for our fixed-point

precision optimization. Note that SCIP’s precision is not unlimited either. If the roundoff error goes

beyond the tolerance limits (that is 1e-15), Aster cannot optimize and will report an error (i.e. it

will not return an incorrect result).

5 EVALUATION
In this section we evaluate Aster based on the following research questions:
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benchmarks # in # params architecture

InvPendulum 4 60 4 × 10 × 1

MountainCar 2 336 6 × 15 × 15 × 2

Acrobot 6 375 6 × 20 × 20 × 8

MPC 6 720 6 × 20 × 20 × 8

SinglePend 2 775 2 × 25 × 25 × 2

DoublePendV1 4 825 4 × 25 × 25 × 2

DoublePendV2 4 825 4 × 25 × 25 × 2

ACC3 5 980 5 × 20 × 20 × 20 × 1

ACC5 5 1,820 5 × 20 × 20 × 20 × 20 × 20 × 1

VCAS 3 1,940 3 × 20 × 20 × 20 × 20 × 20 × 9

ACC7 5 2,660 5 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 1

AC6 12 3,457 12 × 64 × 32 × 16 × 1

Unicycle 4 3,500 4× 500 × 2

ACC10 5 3,920 5 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 1

AC7 12 12,033 12 × 128 × 64 × 32 × 1

Airplane 12 13,540 12 × 100 × 100 × 20 × 6

ControllerTora 4 20,800 4 × 100 × 100 × 100 × 1

AC8 12 44,545 12 × 256 × 128 × 64 × 1

Table 2. Details of benchmark architectures, listing the number of inputs, and parameters (considering both
weight and bias parameters) as well as the neurons in each layer

RQ1 How do different input parameters affect Aster’s results and performance?

RQ2 How does Aster compare with the state-of-the-art in terms of implementation cost of NNs?

RQ3 How does Aster compare with the state-of-the-art in terms of optimization time?

Benchmarks. We have collected a set of 18 neural network controllers, consisting of 15 models

from the competition at the Applied Verification for Continuous and Hybrid Systems (ARCH)

workshop from the years 2019 [40] and 2020 [34], where the networks were provided by academia

as well as industry. Additionally, we included 3 controller models from the VNN-LIB standard

benchmark set [22], which is widely used for the verification of neural networks. Verification of

these controllers is becoming increasingly important due to their usage in safety and operational

critical systems. We took all benchmarks for which we could extract all values of weights and

biases from the repository. Table 2 provides details of the network architectures. We present here a

brief description of the benchmarks; a more detailed discussion can be found in [14, 22, 34].

The InvPendulum, SinglePend, DoublePend, Acrobot (originally from [32]) are the neural

network controllers for pendulums in different settings. The Unicycle and MountainCar, originally
taken from [15] and [32] respectively, model cars to control two separate control objectives. We also

have four different versions of ACC, an Adaptive Cruise Control system of a car, with 3, 5, 7, and 10

hidden layers. The MPC benchmarkmodels a quadrotor (introduced in [32]) and the ControllerTora
benchmark controls translational oscillations [16]. The Airplane and VCAS (originally from [35])

model a dynamical system and collision avoidance systemACASX of an aircraft. The AC benchmarks

are derived from a baseline case study involving a Drone controller [22] that regulates a single

RPM value across all motors to facilitate takeoff and maintain a fixed hovering position.

We have extracted the safe input ranges, the weight matrices and bias vectors of these controllers

from the competition’s repository [1, 14], as well as the VNN-LIB repository [22]. The provided
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MATLAB files, hierarchical data format (HDF) files, and open format for ML models (ONNX) files

were converted into the input format of Aster. The networks do not come with specified target

error bounds, so we choose two target absolute error bounds uniformly for all networks, 1e-3 and

1e-5, that we believe to be in a reasonable range for embedded controllers, which are typically

implemented in lower precision (16 bits or 32 bits).

Experimental Setup. All experiments are done on an Intel Core i5 Debian system with 3.3 GHz

and 16 GB RAM. Aster uses SCIP Optimization Suite 7.0.3 as the external MILP solver. We set

1e-15 as the zero and feasibility tolerance limits for the SCIP as these tolerances are precise and

efficient enough for our purpose. We further assume 32 as the initial guess for the word length of

the maximum weights to start the optimization. We choose to compare Aster with the state-of-

the-art precision tuner Daisy [11], as this is the only available sound mixed-precision tuner for

fixed-point programs. For the comparison we use Daisy’s version downloaded on 2
𝑛𝑑

March, 2021

(there were no major commits since). We set a 5-hour time budget for each optimization run in

our experiments. We believe that a total of 5-hour is a reasonable time for an analysis to generate

a sound implementation once that can directly be synthesized on FPGAs. For synthesis of FPGA

designs, we use Xilinx’s Vivado HLS tool [52] (version v2020.1) downloaded on 27
𝑡ℎ

May, 2020,

and set a timeout of 5 hours for our experiments.

5.1 RQ1: Parameterization
Aster has several input parameters that are needed to make the MILP optimization tractable,

specifically the range of the fractional bits 𝜋 and the input fractional bit lengths 𝜋0, which determines

the input error. These input parameters affect Aster’s results and optimization time.

Choosing a wide range of 𝜋 results in more variables

settings 𝜋0 initial error 𝜋 range

A 20 2
−20

[5, 32]

B 32 2
−32

[10, 32]

C 10 0 [5, 32]

D 17 0 [10, 32]

Table 3. Aster’s settings

and constraints, thus making it harder for the underlying

SCIP optimizer to generate results. 𝜋0 needs to be large

enough to admit a valid solution to the optimization prob-

lem, but too large 𝜋0 will, in general, result in a—potentially

unnecessarily—higher overall cost. Note that since Aster

computes an over-approximation of the error, the solver

may report infeasibility even though a solution to the not-

approximated problem may exist.

We determine suitable parameters for our benchmarks with a systematic empirical exploration

using four different settings denoted by the letters ‘A-D’ shown on the left in Table 3, considering

the two error bounds 1e-3 and 1e-5. Settings A and B both consider input errors; setting B is

expected to be make more benchmarks feasible at the expense of potentially higher cost due to

smaller initial roundoff error. Settings C and D set the input error to zero. These settings are useful

when the user knows that the inputs are represented exactly and is only interested in considering

the roundoff error during the internal computations.

Table 4 shows the overall cost of the precision assignment determined by Aster for these 4

different settings. Setting A is, in general, cost-effective with a larger error bound (1e-3), but results

in infeasible error bounds for the larger networks. The reason for this is that the bigger initial

error gets magnified along with computing new errors at each layer, thus making it impossible

to achieve the target error bound. As expected, more benchmarks become feasible with setting B.

However, the tradeoff is that setting B mostly computes a larger cost as it considers the largest

initial fractional bit length.

Settings C and D are expected to compute the lowest cost, as the input variables in these settings

incur no error, along with smaller initial fractional bit lengths. This is indeed the case for 9 and 13
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benchmarks

target error = 1e-3 target error = 1e-5

A B C A B D

InvPendulum 20404 20404 20404 36886 34966 34006
MountainCar 151160 154934 163486 inf 207970 207970
Acrobot 175601 151103 157546 274887 248595 248595
MPC 250952 250952 250952 inf 250952 250952
SinglePend 271918 362100 263547 436565 438992 438992

DoublePendV1 352720 420640 408280 581144 540042 540042
DoublePendV2 442416 436810 453224 inf 508924 505722
ACC3 444638 442438 442438 inf 446838 446838
ACC5 inf 702228 702228 inf 702228 702228
VCAS inf inf inf inf inf inf

ACC7 inf inf inf inf inf inf

AC6 2069122 1986944 2009218 inf 2069122 2069122
Unicycle 1134062 1134062 1134062 1736074 1636072 1636072
ACC10 inf inf inf inf inf inf

AC7 inf 6660220 6660220 inf 6660220 6660220
Airplane inf 5967462 5967462 inf inf inf

ControllerTora 10562548 11605748 11632956 13532966 13532966 13532966
AC8 inf 21338216 21261416 inf 21338216 21338216

Table 4. Parameter evaluation of Aster’s with settings ‘A-D’, inf denotes infeasibility

of the benchmarks out of 18, with error bounds of 1e-3 and 1e-5, respectively. For the rest of the

benchmarks settings C and D compute higher costs than settings A and B, though the costs are

mostly close to those of setting A or B. We have observed that for these benchmarks, the optimizer

finds some specific assignment configurations that work optimally given the optimization problem.

These assignments cost more in the end when we compute the final costs of the whole program

after assigning precision to all intermediate program variables and constants. If the user already

knows how many bits are required to represent the inputs exactly, setting D is better, as Aster can

take that into account.

The benchmarks VCAS, ACC7, ACC10 are infeasible with all the settings. Upon closer inspection,

we found that this is due to intermediate ranges becoming very large (on the order of 1e+9). For

example, if we reduce the range of one of the input variables of the VCAS benchmark slightly (from

[-133, -129] to [-130, -129]), Aster’s setting B is able to generate a precision assignment in 16.45

seconds for the target error bound of 1e-3. That said, since Aster cannot generate a precision

assignment for the original input ranges, we remove these benchmarks from the later experiments.

We explore the generic settings A-D for our evaluation, but we expect that when using Aster on a

specific application, the user may either know suitable parameter values up front, or may run Aster

several times to explore different options. The latter is feasible due to Aster’s small optimization

times (see Section 5.3).

We use settings A and B with error bounds 1e-3 and 1e-5, respectively, for our comparison

with the state-of-the-art in Section 5.2 except for ACC5, AC7, Airplane, and AC8. For these four
benchmarks we will use setting B for both error bounds, as only with setting B, we could generate

implementations. We do not include settings C and D as the state-of-the-art tuner does not support

analysis without initial errors.
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5.2 RQ2: Implementation Cost
We compare Aster with the state-of-the-art precision tuner Daisy [11] that focuses explicitly

on optimizing the precision to satisfy given roundoff error bounds and generates mixed fixed-

precision implementations of arithmetic programs that are sound considering all possible fixed-

point precisions (not only, say, 4 or 8 bits). Note that dynamic quantization tools like SeeDot [21]

and Shiftry [37] are not sound and are designed specifically for neural network classifiers, and do

not handle feed-forward neural network controllers that solve regression problems that we focus

on in this work.

Daisy uses a forward data-flow analysis to soundly compute intermediate ranges, avoid overflow,

and compute roundoff errors. It works on generic straight-line code without loops, and in particular,

does not handle programs with data structures like matrices and vectors that are standard in neural

networks. To use Daisy on these programs, we completely unroll the loops and data structures, i.e.,

manually assign individual matrix and vector elements to individual scalar variables.

Daisy supports the following two modes:

• Uniform: In this mode, Daisy computes the total error bound for a given fixed precision. To

determine the lowest uniform precision that satisfies the error bound, we manually employ

Daisy repeatedly in this mode and check if the computed error satisfies the given bound.

• Mixed-precision: This mode generates a mixed fixed-point precision assignment using a

heuristic search based on delta-debugging [11] that repeatedly evaluates the roundoff errors

for different precision assignments, starting from the lowest uniform precision that satisfies

the given error bound. However, the computational cost of this heuristic search increases

rapidly as the size of the neural network grows.

Daisy generates the tuned fixed-point code as a C program in the same format as Aster that can

be directly compiled to an FPGA by the Xilinx compiler [52]. Just like the input, the output code of

Daisy is fully unrolled straight-line code and potentially very large.

We compare Aster’s setting A (fractional bits in the range [5, 32] and the input fractional bit

length = 20), setting B (fractional bits in the range [10, 32] and the input fractional bit length = 32),

and Daisy with uniform and mixed-precision tuning with a maximum bit length of 32 bits on all

our benchmarks considering the 1e-3 and 1e-5 error bounds. For uniform precision, we use the

lowest uniform precision that satisfies the error bounds. Note that we do not consider settings C

and D, as in those settings we assume no initial error, which Daisy does not support.

Both Aster and Daisy share the common objective of minimizing the total number of bits utilized

by the neural network (NN). However, they employ entirely different techniques to achieve this goal.

Daisy employs a heuristic search method that involves multiple iterations of error analysis—one for

each candidate precision assignment. In contrast, Aster adopts a global optimization-based approach:

it creates a single optimization constraint and solves it for the precision assignment. Although both

tools employ cost functions for mixed precision tuning, these functions are similar but not identical.

We cannot use Daisy’s cost function directly in Aster as it would lead to non-linear constraints.

Specifically, Aster uses assumptions (see Section 3.2) regarding the bit lengths of the NN structures

(matrices, vectors) and the inputs to maintain linearity. These assumptions make sense when opti-

mizing neural networks, for example, to keep the data structures intact in the final implementation.

It is also not immediately possible to adapt Daisy to use Aster’s cost function. Daisy considers the un-

rolled code as-is, optimizes each variable individually, and assigns precisions to all variables in a pro-

gram, including the inputs. Hence, Daisy only has the unrolled code available while optimizing, but

would need the higher-level data structure information for Aster’s cost function. Hence, an entirely

fair comparison of Daisy and Aster is impossible as their targeted and possible optimizations differ.
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target error: 1e-3 target error: 1e-5

Daisy Daisybenchmarks

uniform mixed

Aster (setting A)

uniform mixed

Aster (setting B)

InvPendulum 12 12 12 14 14 13
MountainCar 27 27 25 28 29 25
Acrobot 24 24 25 24 25 26

MPC inf inf 35 inf inf 37
SinglePend 22 23 25 24 24 27

DoublePendV1 29 28 28 31 31 28
DoublePendV2 36 36 27 36 36 30
ACC3 49 49 44 inf inf 46
ACC5 inf inf 72# inf inf 74
AC6 62 62 48 inf inf 49
Unicycle 178 178 27 inf inf 28
AC7 TO TO 8310∗# inf inf 8310∗#

Airplane TO TO 9001∗# TO TO inf

ControllerTora TO TO 13158∗ TO TO 13558∗

AC8 TO TO ×∗#
TO TO ×∗#

Table 5. Latencies of implementations generated by Daisy and Aster considering errors 1e-3 and 1e-5 respec-
tively (TO: timed out after 5 hours, inf: tools returned infeasible, #: used Aster’s setting B, *: compiled with
explicit loops (i.e. not unrolled code)), ×: Xilinx failed to compile the implementation

Latency of FPGA Implementations. Ultimately, what matters is the actual performance of the

generated mixed-precision code. Since Daisy has been used to optimize the latency of fixed-point

implementations on FPGAs [33], we compare the tools on that measure. We compile the code

generated by Aster and Daisy for a (standard) FPGA architecture using the Xilinx’ Vivado HLS tool

and compare the running time in terms of machine cycles, i.e. latency, that the compiler reports for

the final hardware implementation. (We cannot customize our cost function further for the HLS

compiler, as it is commercial and its internal implementation choices are unknown.) Note that this

reported latency is exact, and we thus do not measure the noisy runtime on actual hardware.

Table 5 shows the latencies of the generated code for our benchmarks considering the target

errors 1e-3 and 1e-5. It shows that Aster generates feasible implementations for significantly more

benchmarks, and for benchmarks where both tools successfully generate compilable code, Aster

mostly produces code with lower latency than Daisy. Considering the latter benchmarks, we see

that Aster matches the performance of Daisy’s generated code for two benchmarks and improves

on it for 5 benchmarks. Only for two benchmarks, Aster’s code’s latencies are (slightly) larger. Our

results thus show that Aster’s optimization is often able to produce faster implementations for

neural network controllers than the state-of-the-art heuristic mixed-precision tuner of Daisy.

Comparing with Daisy’s uniform precision assignments, we furthermore confirm that mixed

precision is indeed overall beneficial for platforms such as FPGAs. This is particularly striking for

the Unicycle benchmark, where Aster’s reduction in latency is almost 84% considering the 1e-3

error as Aster is able to optimize some variables much more significantly than Daisy. The latency

considering the smaller error bound is only slightly larger, whereas Daisy reports infeasibility.

Our results also show that Aster is more scalable than Daisy; generating a precision assignment

for all benchmarks for the larger error bound (Daisy failing on 6), and reporting an infeasible result

for one benchmark with the smaller error bound (Daisy failing on 9). Owing to our optimization

problem formulation, the number of variables of the MILP grows linearly with the number of
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benchmarks

target error: 1e-3, setting: A target error: 1e-5, setting: B

Daisy’s cost Aster’s cost Daisy’s cost Aster’s cost

u (%) m (%) u (%) m (%) u (%) m (%) u (%) m (%)

InvPendulum -6.44 -13.97 15.99 17.80 -23.52 -37.31 17.08 13.45
MountainCar -43.14 -52.47 -2.64 -0.02 -19.68 -31.47 14.18 17.84
Acrobot -25.70 -37.30 -21.84 -34.12 -6.10 -19.93 -8.21 -2.12

MPC * * * * * * * *

SinglePend 1.89 -11.12 11.95 2.58 0.96 -2.57 10.81 10.69
DoublePendV1 -16.36 -24.33 6.00 3.61 -14.12 -16.11 5.01 10.01
DoublePendV2 -32.61 -40.95 0.92 6.22 -40.71 -47.05 24.56 24.38
ACC3 -62.01 -65.50 38.37 19.35 * * * *

ACC5 inf inf inf inf * * * *

AC6 -66.95 -64.96 18.13 17.45 * * * *

Unicycle 24.10 9.50 48.15 39.20 * * * *

AC7 × × × × * * * *

Airplane inf inf inf inf inf inf inf inf

ControllerTora × × × × × × × ×
AC8 × × × × × × × ×

Table 6. Reduction (%) in cost using Aster’s settings A and B w.r.t. Daisy’s uniform (u) and mixed (m) analyses
considering 1e-3 and 1e-5 error bounds using Daisy’s and Aster’s cost functions (×: Daisy times out after 5
hours, *: Daisy returns infeasible but Aster generates an implementation, inf: Aster returns infeasible)

layers: one decision variable for the dot product computation and the other for adding bias. This

formulation makes it possible for Aster to find a solution even for large networks. In contrast,

Daisy’s heuristic search becomes intractable with the increasing complexity of the network, leading

to many variables and constants. In addition, Daisy performs the error analysis multiple times to

ensure that the precision assignment meets the error requirement, thus timing out often.

We run the Xilinx Vivado compiler on the fully unrolled code as we have observed that it leads to

smaller latencies (and Daisy generates fully unrolled code). The exceptions are the AC7, Airplane,
ControllerTora, and AC8 benchmarks (marked with a star in Table 5), where the generated C code

is too large to be compiled within the 5h timeout (∼ 36K, 40K, 62K, and 134K lines of code). Aster

can generate smaller programs (54, 58, 54, 54 lines of code) that preserve the original NN structures

and loops, and we use these implementations for compilation with Xilinx. The benchmark AC8,
however, is still too large in terms of the number of loop iterations to be compiled by Xilinx within

5 hours without further customization. Nonetheless, in general our results show that considering

the high-level structure of NNs is beneficial especially for larger networks.

Comparison of Cost Functions. We also compare Daisy’s and Aster’s results using both cost

functions: we generate unrolled code by Aster to use Daisy’s cost function, and we use Aster’s

cost function to evaluate code generated by Daisy. Table 6 shows the cost reduction in % achieved

by Aster with respect to Daisy’s analyses. A negative result signifies that the cost of Aster’s

implementation is higher than Daisy’s.

Not surprisingly, our results show that Aster outperforms Daisy’s analyses considering Aster’s

cost function excluding both MountainCar and Acrobotwith error bound of 1e-3 and only Acrobot
with error bound of 1e-5. However, with Daisy’s cost function, Daisy’s analyses, both uniform and

mixed outperform Aster, where the cost is computed on the unrolled program, with the exception
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benchmarks

error: e-3 error: e-5

Daisy (unif) Daisy (mix) Aster (A) Daisy (unif) Daisy (mix) Aster (B)

InvPendulum 1.72 4.19 1.66 1.70 5.42 1.62
MountainCar 5.16 43.68 2.22 5.11 38.79 2.15
Acrobot 6.25 196.93 2.31 6.04 95.41 2.24
MPC - - 3.50 - - 3.44
SinglePend 17.63 237.83 3.52 17.23 115.25 3.53
DoublePendV1 19.42 127.96 3.69 19.69 201.13 3.84
DoublePendV2 20.55 246.64 3.80 20.66 334.03 3.72
ACC3 27.13 292.05 7.28 - - 4.84
ACC5 - - 12.97# - - 12.85
AC6 311.37 2033.23 51.01 - - 51.04
Unicycle 354.71 9980.65 49.92 - - 45.78
AC7 3999.54

∗
TO 727.40# - - 729.05

Airplane 906.93∗ TO 1060.92
#

TO TO -

ControllerTora 12128.83
∗

TO 2875.95 TO TO 2521.21
AC8 TO TO 13771.43# TO TO 13794.66

Table 7. Optimization time (in seconds) averaged over 3 runs; TO: timed out after 5 hours, *: used 32 bit
uniform precision analysis, #: used Aster’s setting B instead of A, -: returns infeasible)

of the Unicycle benchmark with 1e-3 error bound and the SinglePend with uniform precision

analysis.

Aster’s cost function on Daisy’s implementation considers the largest bit lengths, one for weights

and the other for bias in a layer, to compute a sound cost. This defeats Daisy’s advantage of

optimizing all variables, thus resulting in higher costs than Aster. Likewise, using Daisy’s cost

function for Aster’s implementation is also suboptimal for Aster as it considers the same bit length

in a layer for linearity and to keep NN structures intact, thus improving scalability. We thus conclude

that Daisy and Aster are each better for their intended use cases. Upon closer inspection of Aster’s

and Daisy’s generated precisions, we further observed that Aster’s assignment of precisions in

the dot product is sometimes overly and unnecessarily conservative and can be improved in the

future. That said, as we have seen in Table 5, unrolled code can become impractical for hardware

implementations of large neural networks. In these cases, Aster’s optimization and cost function

are better suited, with which Aster performs significantly better than Daisy.

5.3 RQ3: Running Time
We compare the optimization time of Daisy’s uniform and mixed-precision tuning with Aster’s

setting A for the target error of 1e-3 and Aster’s setting B for the target error of 1e-5. For Daisy’s

uniform precision, we only show the time to run the roundoff error analysis once after we find the

lowest uniform precision satisfying the error bound using Daisy’s mixed precision analysis (we

could not find a better way to generate this information). Also, Aster generates infeasibility with

setting A for the ACC5, AC7, Airplane, and AC8 benchmarks with target error 1e-3, we show the

running time with setting B. Table 7 shows the end-to-end optimization time measured by the bash

time command of Daisy and Aster in seconds averaged over 3 runs.

In general, running uniform precision roundoff analysis once is quick for smaller benchmarks,

but with the increased size of the network, it also becomes slower and even times out after 5 hours

for the largest benchmark AC8 with both target error bounds. The running times are substantial

even though Daisy assigns a uniform given bit length because it still needs to run the error analysis
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to ensure overflow freedom and appropriately assign integer bits. Daisy’s mixed-precision tuning

usually is a magnitude slower than the uniform precision analysis.

Aster outperforms Daisy’s both analyses substantially in terms of running time for both error

bounds for almost all benchmarks with the exception of Airplane where running Daisy’s uniform

analysis once is the fastest. Due to our formalization of the optimization problem, the number of

constraints and variables only depends linearly on the number of layers and the range of fractional

bits (𝜋 ) for Aster’s settings. Our experiments show that solving an MILP problem with a limited

number of variables is very efficient; when a solution was feasible the solver returned in at most

0.15 seconds. Our experiments thus confirm that constraint optimization is not a bottleneck of our

mixed precision tuning and our approach is indeed a viable solution for fixed point computation,

even for large networks with many parameters.

As setting B uses a smaller range of fractional bits ([10, 32]), the number of constraints in this

setting is less than in setting A, thus, in general, resulting in smaller running time. Also, the number

of variables and constraints increases only linearly with an increased number of layers. Solving an

MILP problem with a limited number of variables is very efficient. The Airplane, ControllerTora,
and AC8 are the largest benchmarks with the most number of variables and constraints. For these

MILP problems, where a solution is feasible (except AC8 with setting A and Airplane in both

settings), it was found in a maximum of 0.15 seconds. Our experiments thus confirm that constraint

optimization is not a bottleneck of our mixed precision tuning. Our approach is indeed a viable

solution for fixed point computation, even for large networks with many parameters.

6 RELATEDWORK
Since there is a substantial body of work on efficient neural network inference, we focus here

on a representative selection of the most immediately relevant techniques, and point to existing

surveys [43, 53] for an overview of other complementary approaches (e.g., model and weight

pruning). Verification techniques of other aspects of neural networks (e.g., adversarial examples) are,

for instance, covered in the survey by Huang et.al. [28]. A more recent work [41] introduces a MILP

formulation for verifying robustness of quantized neural networks. However, this work is orthogonal

to ours as it focuses on post-quantization verification and does not consider the impact of roundoff

errors. Another work [54] focuses on computing output ranges of feed-forward neural networks

with non-linear activations (e.g., sigmoid and exponential linear units) in safety-critical systems,

where it encodes the non-linear activations with linear constraints. It could be an interesting future

direction for Aster to extend it for non-linear activations by combining their technique.

Quantization is a frequently applied technique to reduce thememory footprint of neural networks,

but most techniques have been applied on neural network classifiers outside of safety-critical

applications and unlike Aster do not provide any accuracy guarantees. We present a brief overview

of these approaches in this paper, but note that they are fundamentally not comparable with our

sound mixed-precision tuning for regression problems. These methods typically focus on selecting a

particular uniform (custom) floating-point [36, 45] or fixed-point precision [21, 23, 39] and showing

empirically that it performs well on a particular data/benchmark set. Shiftry [37] automatically

chooses a mixed fixed-point precision by iteratively reducing the precision of variables in recurrent

neural networks from 16 to 8 bits to run on memory restricted hardware. Another approach to

mixed-precision is to dynamically adapt to outliers, i.e. particularly large values, in inputs or weights

by providing specialized hardware architectures [44, 47, 48]. Alternative number representations

have also been considered, such as stochastic computing [17], posits [9] and floating-points with

different, tunable exponent and mantissa widths [19, 50].
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Recent work [26] on quantization-aware training for embedded controllers offers new tools for

automatic parameter compression or quantization by retraining the network and using a multiplier-

less approach for dense layers. This work does not analyze the rounding error propagation, but it

is complementary to our approach, and combining these two is a potential future work. There exist

different techniques to build custom operators for sums of products by constants with an accuracy

requirement. The first work of Dinechin et al. [13] presents an approach that permits to use only a

necessary amount of bits for intermediate products, based on a worst-case error-analysis, and we

use this approach in this paper. Another technique is a multiplierless approach: multiplications

by constants are replaced by bit-shifts and additions, and intermediate terms are shared when

several constants are multiplied [38]. A new ILP-based solution for sound truncated multipliers

was recently proposed [46], and it takes the result’s format as its input. Aster could be extended to

use this approach, instead of [13] for the Step 3, but the scalability of [46] is a major concern for

word-lengths beyond 16 bits. For the best fine-tuned FPGA-based dot products the standard HLS

tools have to be replaced by custom hardware code generators, such as FloPoCo tool [12]. But then,

a whole new problem of a custom NN accelerator arises.

The tool POP finds mixed-precision assignments for floating-point arithmetic code by phrasing

the problem as an ILP problem [2]. POP uses a dynamic analysis to infer variable ranges and

thus does not guarantee complete soundness. A similar technique has been applied to tuning the

floating-point precision of neural networks [30]. FPTuner [10] provides sound mixed-precision

tuning for floating-point arithmetic by solving a nonlinear interval-valued optimization problem.

Unfortunately, approaches for floating-point arithmetic are generally not applicable to fixed-point

arithmetic due to its non-dynamic range.

The tool Daisy [11, 33] includes a sound mixed-precision tuning procedure for both floating-

point and fixed-point arithmetic, based on an iterative search using delta-debugging. Other iter-

ative approaches have been explored for mixed-precision tuning for fixed-point arithmetic, for

example Min+1 or Max-1 [8], and a combination of Bayesian optimization and Min+1 [25]. Iterative

approaches have been proposed to overcome difficulties in phrasing and more importantly solving

sound global optimization problems. Alternatives are relaxing the integer to real-valued optimiza-

tion [18], but work for Digital signal processors (DSPs) only. Generally, these techniques (with the ex-

ception of Daisy) treat errors as uncorrelated and additive or evaluate them dynamically with simula-

tion, and thus do not guarantee soundness. We have shown that for the restricted class of neural net-

works of limited size and with appropriate approximations, a sound optimization is indeed feasible.

Fixed-point arithmetic was also recently formalized as a theory in the context of Satisfiability

Modulo Theory (SMT) solvers [5]. However, to compute or bound roundoff errors, such a theory

must be combined with the real-valued theory (representing the ideal program), which is in general

inefficient.

7 CONCLUSION
This paper presents a novel sound quantization approach that assigns fixed-point mixed precision

to neural networks that solve regression tasks, guaranteeing a user-provided roundoff error bound.

We reduce the problem of precision optimization to an MILP problem and show how to effectively

introduce sound over-approximations to be able to solve it efficiently using a state-of-the-art

solver. Our experiments show that our method is fast, even for large networks with thousands

of parameters. This efficiency indicates that constraint optimization is not a bottleneck here.

Our proposed technique is viable for soundly quantizing neural networks that appear as verified

embedded controllers. It is able to handle more and larger benchmarks than existing fixed-point

tuners, and mostly generates more efficient code for custom hardware such as FPGAs. While this

paper primarily focuses on neural network controllers which are typically regression models, there
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is potential for extending Aster’s applicability to quantizing classifiers with more work on bridging

the gap between numerical and classification accuracy.
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