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Abstract

Numerical programs are ubiquitous across many domains, including embedded systems,
scientific computing, and machine learning. These programs utilize finite precision computations
that inevitably introduce numerical uncertainties. These uncertainties are usually a combination
of input uncertainties arising from, e.g., the noisy sensors of the underlying hardware and
finite-precision (roundoff) errors that can occur at every arithmetic operation. While these errors
are individually small, they can propagate through an application unintuitively and can make
the final results meaningless. Thus, it is essential to verify that numerical errors in a program
remain acceptably small.

In addition to ensuring accuracy, implementing finite-precision programs on real hardware
also necessitates efficiency in terms of resource usage. While precise data types can yield accurate
results, they often come at the cost of increased resources, such as execution time and chip area.
Thus, optimizing the implementations to strike a balance between accuracy and efficiency for
specific hardware applications is crucial.

Several static and dynamic analyses exist to verify and estimate roundoff errors, to test,
and to optimize the precision of finite-precision programs. Static analyses typically perform
sound worst-case analysis but are primarily designed for straight-line special syntax code, with
limited support for conditionals and loops. These limitations also extend to sound optimization
techniques. Similarly, the current dynamic analyses are also limited by their inherent inability to
provide soundness guarantees and to detect errors in large-scale programs within a reasonable
time, primarily due to the complexities associated with finite precision.

In this thesis, we address three limitations of state-of-the-art analysis and optimization
techniques, thus expanding the individual capabilities of these analyses for finite-precision
programs.

First, we introduce probabilistic analysis for finite-precision programs that goes beyond
traditional worst-case analyses by capturing the effects of probabilistic inputs. We explore two
important issues in this context. Our first contribution is a probabilistic analysis that takes
into account the effects of numerical uncertainties on discrete decisions for both floating-point
and fixed-point programs. Secondly, we present the first sound probabilistic error analysis
for floating-point programs. The error analysis also handles probabilistic error specifications
prevalent in today’s approximate hardware. Our evaluation shows that these two analyses can
analyze small but exciting embedded and neural network programs from the literature with
arithmetic and elementary operations.

Next, we propose a two-phase framework that combines static and dynamic analyses to
address their scalability issues for numerical programs. By integrating these approaches, we are
able to (conditionally) verify the absence of special floating-point values (NaN and Infinities) and
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large roundoff errors in more extensive programs with more than 2K lines of C and C++ code.
This framework handles complex programming structures and intricate data representations,
thus broadening the scope of numerical program verification.

Finally, we present the first sound mixed-precision fixed-point quantization technique tailored
specifically for neural networks. This technique efficiently optimizes the number of bits needed
to implement a network while guaranteeing a provided error bound. An extensive evaluation on
existing embedded neural controller benchmarks shows that our technique outperforms generic
static fixed-point precision tuners. Our technique enables scalable and efficient optimization in
terms of machine cycles when compiled to an FPGA, particularly for large-scale neural networks
with thousands of parameters.



Zusammenfassung

Numerische Programme sind in vielen Bereichen allgegenwärtig, darunter in eingebetteten
Systemen, wissenschaftlichem Rechnen und maschinellem Lernen. Diese Programme verwenden
Berechnungen mit endlicher Präzision, die zwangsläufig numerische Unsicherheiten mit sich
bringen. Diese Unsicherheiten sind in der Regel eine Kombination aus Eingabeunsicherheiten,
die beispielsweise durch verrauschte Sensoren der zugrunde liegenden Hardware entstehen, und
Fehlern durch endliche Genauigkeit (Rundungsfehler), die bei jeder Rechenoperation auftreten
können. Auch wenn diese Fehler individuell klein sind, können sie sich unintuitiv durch eine
Anwendung ausbreiten und dazu führen, dass die Endergebnisse bedeutungslos werden. Daher
ist es wichtig zu überprüfen, ob numerische Fehler in einem Programm akzeptabel klein bleiben.

Neben der Sicherstellung der Genauigkeit erfordert die Implementierung von Programmen
mit endlicher Präzision auf realer Hardware auch eine effiziente Ressourcennutzung. Während
präzise Datentypen genaue Ergebnisse liefern können, gehen sie oft mit höheren Ressourcen
wie Ausführungszeit und Chipfläche einher. Daher ist es von entscheidender Bedeutung, die
Implementierungen zu optimieren, um ein Gleichgewicht zwischen Genauigkeit und Effizienz
für bestimmte Hardwareanwendungen zu finden.

Es gibt mehrere statische und dynamische Analysen, um Rundungsfehler zu überprüfen und
abzuschätzen, um die Präzision von Programmen mit endlicher Genauigkeit zu testen und zu
optimieren. Statische Analysen führen in der Regel eine Worst-Case-Analyse durch, sind jedoch
in erster Linie für geradlinigen Code mit spezieller Syntax konzipiert und bieten nur begrenzte
Unterstützung für Bedingungen und Schleifen. Diese Einschränkungen erstrecken sich auch
auf korrekte Optimierungstechniken. Ebenso sind die aktuellen dynamischen Analysen auch
dadurch eingeschränkt, dass sie nicht in der Lage sind, Garantien zu geben und Fehler in
umfangreichen Programmen innerhalb einer angemessenen Zeit zu erkennen, was vor allem auf
die mit endlicher Präzision verbundenen Komplexitäten zurückzuführen ist.

In dieser Arbeit befassen wir uns mit drei Einschränkungen moderner Analyse- und
Optimierungstechniken und erweitern die individuellen Möglichkeiten dieser Analysen für
Programme mit endlicher Präzision.

Zunächst führen wir eine probabilistische Analyse für Programme mit endlicher Genauigkeit
ein, die über herkömmliche Worst-Case-Analysen hinausgeht, indem sie die Auswirkungen
probabilistischer Eingaben erfasst. Wir untersuchen in diesem Zusammenhang zwei wichtige
Themen. Unser erster Beitrag ist eine probabilistische Analyse, die die Auswirkungen nu-
merischer Unsicherheiten auf diskrete Entscheidungen sowohl für Gleitkomma- als auch für
Festkommaprogramme berücksichtigt. Zweitens präsentieren wir die erste fundierte proba-
bilistische Fehleranalyse für Gleitkommaprogramme. Die Fehleranalyse berücksichtigt auch
probabilistische Fehlerspezifikationen, die in heutiger Approximate Hardware vorherrschen.
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Unsere Auswertung zeigt, dass diese beiden Analysen kleine, aber interessante eingebettete
und neuronale Netzwerkprogramme aus der Literatur mit arithmetischen und elementaren
Operationen analysieren können.

Als nächstes schlagen wir ein zweiphasiges Framework vor, das statische und dynamische
Analysen kombiniert, um deren Skalierbarkeitsprobleme für numerische Programme anzugehen.
Durch die Integration dieser Ansätze können wir (bedingt) das Fehlen spezieller Gleitkommaw-
erte (NaN und Unendlichkeiten) und großer Rundungsfehler in umfangreicheren Programmen
mit mehr als 2K Zeilen C- und C++-Code überprüfen. Dieses Framework verarbeitet komplexe
Programmierstrukturen und komplizierte Datendarstellungen und erweitert so den Umfang der
numerischen Programmverifizierung.

Abschließend stellen wir die erste korrekte Festkomma-Quantisierungstechnik mit gemischter
Präzision vor, die speziell auf neuronale Netze zugeschnitten ist. Diese Technik optimiert
effizient die Anzahl der zur Implementierung eines Netzwerks erforderlichen Bits und garantiert
gleichzeitig eine gegebene Fehlergrenze. Eine umfassende Auswertung bestehender Benchmarks
für eingebettete neuronale Controller zeigt, dass unsere Technik generische statische Festkomma-
Präzisionstuner übertrifft. Unsere Technik ermöglicht eine skalierbare und effiziente Optimierung
in Bezug auf Maschinenzyklen, wenn sie in einem FPGA kompiliert wird, insbesondere für
große neuronale Netze mit Tausenden von Parametern.
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1Introduction

Numerical programs solve intricate mathematical problems across various domains,
including image and signal processing, graphics, simulations, decision-making, and
controlling the behavior of systems that interact with the physical world. For instance,

a variety of science and engineering problems require simulating hydrodynamics equations,
which are approximated by numerical programs [114]. Furthermore, in the aviation industry,
automated collision avoidance systems rely on numerical programs [117], which may incorporate
machine learning models to prevent collisions. Clearly, in these systems, the consequences of
unacceptable errors can be severe. Thus, ensuring their accuracy and performance is crucial to
mitigate risks and guarantee safety.

In an ideal scenario, these numerical programs would utilize infinite real-valued arithmetic
for computation. However, due to limited resources and the high cost of running programs with
infinite precision, implementations of these programs utilize finite-precision arithmetic, such as
floating-point [85] or fixed-point [176] arithmetic.

Consequently, these numerical programs introduce errors into the computation due to the
difference between each finite precision value and real value potentially after each operation.
While these errors are individually small, they can propagate through the computation in an
unpredictable way and cause significant discrepancies from the ideal real-valued result. In some
cases, these errors can even cause the program execution to take incorrect paths, resulting in
completely meaningless outcomes.

In addition, floating-point arithmetic features special values such as not-a-number (NaN)
and Infinity [113]. NaN represents an undefined or unrepresentable value that can arise from
operations like dividing zero by zero. Infinity, on the other hand, occurs when a computation
results in a value that is not representable with the maximum number of finite bits. These
special values further contribute to the complexity of reasoning about and (manually) debugging
computations in finite-precision arithmetic, posing challenges for developers.

Therefore, it is essential to detect, analyze, and quantify these errors automatically and to
ensure that numerical programs provide accurate results within the limitations of finite precision
arithmetic and sensor uncertainties.

1.1 Finite-Precision Error Analysis

There has been much work on verifying numerical errors for floating-point and fixed-point
arithmetic. There exist several static analysis tools and techniques that (automatically) analyze
numerical programs and obtain sound bounds for numerical errors. These techniques can
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2 chapter 1. introduction

additionally verify the absence of special float values (NaN and infinity) in the computation.
These techniques can be broadly classified into two approaches. The first approach involves

forward data-flow analyses [88, 89, 55, 53], that automatically compute sound error bounds
on floating-point (and some also on fixed-point) roundoff errors. The second approach is
based on global optimization [57, 162, 140] that formulates the error-bound computation as an
optimization problem, where the objective is to maximize the absolute error bound subject to
interval bounds on the input parameters of the program.

Both data-flow and optimization-based roundoff-error analyses have successfully been
applied to compute sound bounds on the roundoff errors for many interesting benchmarks
from various domains like scientific computing, physics simulation, and embedded systems.
However, they have two significant limitations.

Limitation 1: Only Worst-Case Error Analysis The state-of-the-art tools mentioned above
compute worst-case roundoff errors, i.e., at each step of the computation, they compute the largest
possible absolute error that can appear for the given ranges of program inputs. This analysis can
be overly pessimistic in the following scenarios.

First, consider the case where a program relies on the result ‘res’ of a numerical computation
to make a decision, as in if(res){...} else{...}. It may be the case that due to roundoff errors,
the finite-precision computation makes a different decision than the real-valued one. Using a
worst-case analysis in this situation would conclude that the finite-precision program always
makes the different (wrong) decision. This result completely disregards the fact that not all
inputs within the range of program inputs would necessarily lead to the program taking the
wrong path.

Secondly, many numerical applications are often designed to be robust to some noise and
tolerate errors—as long as they remain within acceptable bounds (e.g., in control systems, where
one feedback iteration may compensate for a larger error of a previous one). For these programs,
employing a worst-case analysis would result in overly pessimistic results as it would assume
that the most significant error always occurs. This approach fails to effectively utilize the inherent
error tolerance of the system.

Finally, the challenge of computing sound but tight bounds on roundoff errors is fur-
ther complicated by the presence of probabilistic error behaviors introduced by approximate
hardware [137, 152], which has gained significant attention due to its potential to enable energy-
efficient computing in various applications. To efficiently utilize resources (i.e., minimizing
power consumption and area), these hardware circuits may intentionally introduce large but
infrequent errors. For such cases, the worst-case analysis is even more pessimistic as it always
considers the largest (worst-case) errors, even if they appear rarely.

Limitation 2: Scalability Static worst-case roundoff error analyzers mostly focus on multivariate
straight-line code written in a special syntax [162, 57, 88], with limited support for conditionals
and loops [88, 89, 55]. As a result, their applicability is mostly limited to small numerical
programs that consist of a single function. However, in practice, realistic numerical programs
are longer and often contain complex data and program structures.
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There do exist scalable static analysis tools – some of these tools [135, 88, 26] rely on
abstraction-based static analysis techniques while others [119, 48] are based on bounded model
checking and SMT decision procedures that perform exact bit-precise reasoning. Unfortunately,
none of these techniques can effectively analyze large numerical programs – they suffer from
significant over-approximations, require manual parameterization, or do not scale particularly
for floating-point arithmetic due to their complexity.

In contrast to static analysis, dynamic analysis executes the program and observes its behavior
at runtime [141, 178], usually offering better scalability to find errors in the programs. They
can analyze large general programs with various program constructs, including loops and
conditionals, without overapproximations. However, dynamic analyses are limited to the
test inputs executed within specified analysis times. Unfortunately, unexplored inputs may
potentially contain bugs. Consequently, these analyses cannot guarantee the absence of errors
that is essential for safety-critical numerical systems.

Dynamic analyses that specifically focus on proving the presence of infinities [77], NaNs, or
cancellation errors [22, 38, 182] exist 1. Unfortunately, none of these techniques can handle large
numerical programs automatically. For example, the tool S3FP [38] requires the user to generate
a high precision (‘real’) version of the program and ensure that the original program and the
generated code produce outputs with the same bit length. The scalability of back-end SMT
solvers limits more guided techniques like symbolic execution [129] for floating-point theories.

In summary, the analysis of realistic numerical programs remains challenging due to the
lack of scalability of sound worst-case roundoff error analyzers and the current limitations of
static and dynamic analysis techniques for numerical programs.

1.2 Finite-Precision Optimization

Implementing numerical programs on actual hardware faces a tradeoff between accuracy and
efficiency. While these programs are designed to account for errors that may arise from noisy
environments or imprecise implementations, deploying them on hardware requires efficient
resource utilization while staying inside these predefined error bounds. This optimization can be
challenging, as higher precision reduces roundoff errors, but may be computationally expensive
or even impractical for hardware with limited resources. On the other hand, reducing precision
can conserve resources like chip area and computation time but may result in more significant
roundoff errors. Therefore, achieving an optimal tradeoff between accuracy and efficiency is
crucial in implementing numerical programs on resource-constrained hardware systems.

In this thesis, our primary focus is on specializing the tradeoff between accuracy and efficiency
for neural networks (NN). These networks are becoming prevalent components in safety-critical
systems, with applications ranging from closed-loop NN controllers for adaptive cruise control

1A very recent tool, EFTSanitizer [41], has been introduced since our work, demonstrating its ability to detect
NaN, infinity, and cancellation errors in large numerical programs. While we have not included a comparison with
this tool, it would be interesting to assess its capabilities under similar resource and time constraints.
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for cars to aircraft collision avoidance systems for airplanes [111].
There have been efforts to automatically verify the safety of limited-size NN systems that

bound errors from noises or inaccuracies [69, 68, 67]. However, implementing these high-
precision floating-point NNs on resource-constrained embedded systems is often impractical
due to high computation costs or the unavailability of dedicated floating-point co-processors or
software-based emulation capabilities. As a result, trained NNs are typically quantized using
low-precision fixed-point arithmetic [92, 87] to achieve efficiency in terms of area or latency.

Numerous approaches have been proposed for the quantization of neural networks. Some
of these methods use a uniform precision for all layers of a model [92, 87, 120] which might be
suboptimal; if one precision is barely not enough, we need to upgrade all operations to a higher
precision. Also, all layers may not have similar effects on the overall accuracy of the model. To
alleviate this problem, some work [146, 163, 159] focuses on mixed-precision quantization where
different operations or layers are performed in different precision, thus saving more resources.

Despite the promising results for NN classification benchmarks, these techniques face the
following challenge when it comes to optimizing NN controllers in safety-critical systems.

Limitation 3: Usability and Performance The quantization techniques mentioned above
are specifically designed for NN classifiers, focusing on dynamically comparing classification
accuracy on specific test datasets. As a result, they cannot handle NNs that do not perform
classification tasks and rather implement regression tasks, which are common for NN controllers
computing (continuous) control values. In addition, these techniques are unsound, i.e., they
cannot guarantee (classification) accuracy, which is essential for safety-critical systems.

Several sound techniques for mixed precision tuning have been developed primarily for
general-purpose numerical programs. There exist tools such as FPTuner [39] and Daisy [54, 109]
that have successfully been applied to numerical programs from various domains, including
scientific computing, simulations, and embedded controllers.

Unfortunately, applying these tools for NN mixed-precision fixed-point quantization is
limited. FPTuner is specifically designed for floating-point programs and cannot handle fixed-
point programs. While Daisy supports both floating-point and fixed-point arithmetic, it relies
on a heuristic search approach that becomes intractable as program sizes grow. Additionally,
Daisy works only on generic straight-line code without loops and does not handle programs
with data structures like matrices and vectors.

In summary, the quantization of NNs performing regression tasks remains challenging due to
the unavailability of dynamic analysis tools and the limited scalability of sound mixed-precision
tuners for large NN fixed-point implementations involving matrices, vectors, and loops.

1.3 Thesis Contributions

This thesis aims to expand the horizons of state-of-the-art finite precision error analysis and
optimization techniques in three directions corresponding to the identified limitations. First,
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/* valid input range: [-15.0, 15.0] */

def controller(x:Float, y:Float, z:Float): Float = {

val res = -x*y - 2*y*z - x - z

if (res > 400.0) raise_alarm()

else do_nothing()

return res

}

Figure 1.1: A non-linear controller encoded in Scala

input distribution # if # else

U [-15, 15] 1563 98437

N (0, 7.5) 497 99503

Figure 1.2: Scenario 1: sampled
frequency of taking branches with
uniform and gaussian inputs

we propose a probabilistic solution to the overly pessimistic state-of-the-art worst-case error
analyses of programs in the presence of numerical uncertainties. Secondly, we propose a
scalable (conditionally) sound analysis that increases the reach of state-of-the-art numerical error
analysis tools beyond what they can do individually for realistic numerical programs. Finally,
we introduce a mixed-precision quantization for neural networks for resource-constrained
embedded hardware. In the following section, we provide a detailed explanation of each of
these contributions.

Solution 1: Probabilistic Analysis of Numerical Uncertainties We present novel probabilistic
analyses that consider the probability distributions of program inputs, propagate them through
the computations, and capture their effects on discrete decisions, where the finite-precision
program may take a different path than the real-valued one, and on round-off errors.

To illustrate the motivation behind the proposed solutions, let us consider a 32-bit floating-
point Scala implementation of a non-linear controller (shown in Figure 1.1) taken from [13]. It
accepts three inputs x, y, and z, with valid ranges [−15.0, 15.0] and computes a result ‘res’ in the
same precision.

We explain two scenarios with this example. First, let us assume that based on the result res,
the program makes a discrete decision of whether an alarm should be triggered. For the sake of
presentation, we show in Figure 1.1 a decision where the real-valued execution always takes the
‘else’ path. However, due to unavoidable roundoff errors, there are certain inputs for which the
finite-precision execution might deviate from the expected path and take the ‘if’ branch instead.

Secondly, we assume the case where, like many real-world applications (e.g., control systems
where one feedback iteration compensates for a larger error of a previous iteration), the program
tolerates large roundoff errors when they occur with low probability.

To understand the behavior of the finite-precision execution for the decision, we sampled
105 inputs from the provided input ranges using both uniform and gaussian (with a mean and
variance of 0.0 and 7.5, clipped within the given range) distributions in 32-bit floating-point
precision. We executed the program with the sampled inputs and counted the frequencies of the
if and else branches as shown in Figure 1.2.

The results in Figure 1.2 confirm that only a small subset of executions deviates and takes
the wrong (if path for our example) branch due to roundoff errors. Therefore, in this scenario, a
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1 2 3 4 5 6 7 8 9

roundoff error ×10−5

0.0

0.5

1.0

1.5

fre
qu

en
cy

×105

Figure 1.3: Scenario 2: sampled errors in 32-bit floating-point precision with uniform inputs

more meaningful metric would be to determine how often the program takes the wrong branch,
which we refer to as the ‘wrong path probability’. Furthermore, these results also show that
the varying probability distributions of inputs significantly affect the frequency of program
deviations from its correct, real-valued path.

To get insights into the second scenario where the program tolerates large roundoff errors, we
sampled the frequency of large roundoff errors. We started with uniformly randomly sampling
105 inputs and compared the absolute errors of the 32-bit floating-point implementation with an
arbitrary-precision 300-bit implementation using the MPFR library [75]. The errors and their
corresponding frequencies are shown in Figure 1.3.

From the plot in Figure 1.3 we observe that for most inputs, the errors are small, and the
largest error marked with the orange-colored dot rarely occurs. Additionally, as the magnitudes
of roundoff errors depend on inputs, the frequency of the largest (worst-case) error occurring
would also depend on the probability distributions of inputs.

All these observations emphasize the necessity of considering the probability distribution of
inputs and propagating them through the computation. By employing a probabilistic analysis
of programs, we can achieve a precise estimate of the wrong path probability. Furthermore,
through probabilistic analysis of errors, we can compute the probability of certain error bounds,
thus capturing differentiated error behavior of programs.

Such a probabilistic error analysis is even more relevant in hardware with approximate
architectures and storage. These hardware often introduce large errors in arithmetic operations
with a certain probability in favor of increased efficiency. To precisely capture these probabilistic
specifications and compute a tight error bound, a probabilistic analysis of errors is necessary.

We present two novel data-flow analyses that take into account the probability distribution
of inputs and propagate them through arithmetic computations by leveraging and extending
probabilistic affine arithmetic [11] 2.

Our first technique aims to compute precise wrong path probabilities for programs with

2Probabilistic affine arithmetic is thoroughly discussed in Section 2.3.
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discrete decisions. However, computing precise estimates using probabilistic affine arithmetic
alone is not enough as it tends to overapproximate the probabilities too much to be useful
in practice. To mitigate this, we propose to subdivide the whole input domain into smaller
subdomains, compute wrong path probabilities individually for each subdivision, and then
(normalized) sum these to determine the overall wrong path probability.

Unfortunately, the high computational cost of probabilistic affine arithmetic limits its
application across all subintervals. To address this, we further extend our technique with
reachability checks to soundly determine subdomains that are actually relevant for computing
the probability of wrong results. The probabilistic analysis is then only run where needed, thus
making it precise and scalable enough for small yet realistic numerical applications.

We have implemented the analysis in a prototype tool on top of an existing worst-case
roundoff error analyzer Daisy [55]. Our tool works on numerical programs with arithmetic and
elementary operations. It considers different probability distributions on the inputs, including
uncertain ones, and fully automatically computes wrong path probabilities considering roundoff
errors in floating-point as well as fixed-point arithmetic. We have evaluated the tool on several
embedded controllers as well as machine learning classifiers and obtained sound yet precise
wrong path probabilities.

Our second technique focuses on computing probabilistic roundoff errors of numerical
programs. We extend probabilistic affine arithmetic for errors that soundly overapproximate
all possible distributions of errors. To reduce over-approximation in the analysis, we further
combine it with a novel probabilistic version of interval subdivision and obtain an efficient
analysis and a tight distribution of errors.

To facilitate the interpretation of error distributions inspired by probabilistic error specifica-
tions in approximate hardware, we also introduce a new error metric that computes a smaller
error than the worst-case one that occurs with a predefined high probability. Our analysis can
also consider errors with probabilistic specifications for approximate hardware systems.

We have developed a prototype tool called ‘PrAn’ and evaluated it on several benchmarks
from the literature. Our results show that PrAn fully automatically computes significantly
smaller error bounds, i.e., it can determine that with probability at least 0.85 (for our experiments),
the errors are, on average, 17% and 16.2% and up to 49.8% and 45.1% smaller than worst-case
errors for gaussian and uniform input distributions, respectively.

Solution 2: Conditional Verification of Realistic Programs We propose a two-phase analysis
to (conditionally) prove the absence of infinity and special floating-point values such as not-a-
number (NaN) as well as cancellation errors in large programs with complicated programming
and data structures.

To present the primary motivation behind this solution, let us consider the ‘N-body’ program
shown in Figure 1.4, taken from Rosetta Code [4]. Our goal is to verify the absence of special
floating values and cancellation errors or to test for their presence in this program. This program
takes as input the masses, positions, and velocities of three bodies, whose ranges are provided
by the user, and simulates their interaction under gravity over several time steps. The program
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int main(int argc, char* argv[]) {... // Reads masses, positions and velocities

for(int i=0; i<timeSteps; i++) { simulate(mass, pos, v); ...}

}

void simulate() { compute_accelerations(mass, pos); ...}

void compute_accelerations(double mass[], vector pos[]){

for(int i=0;i<bodies;i++){ ...

for(int j=0;j<bodies;j++) {if(i!=j) {

acc[i] = numerical_kernel(mass[j], pos[i], pos[j], acc[i]);}}}}

vector numerical_kernel(double mass, vector pos_i, vector pos_j, vector acc) {

return add_vectors(acc, scale_vector(g*mass/pow(mod(subtract_vectors(pos_i,pos_j)),3),

subtract_vectors(pos_j,pos_i)));} // compute acceleration

Figure 1.4: N-body problem encoded in C

is single-threaded and moderately sized, comprising 108 lines of code with control flows and
function calls.

Unfortunately, none of the existing static and dynamic analysis tools could prove the absence
or the presence of special floating-point values and cancellation errors in the ‘N-body’ program.
We exhaustively employed all tools capable of directly handling the program without requiring
extensive manual parameterization or annotation, such as Astreé [135], CBMC [119], AFLGo [27].
There is, therefore, a clear need for scalable, automated verification or debugging techniques for
these programs.

Upon examining the N-body program, our main insight is that only a relatively small part
of a program often performs complex numerical computations. For example, the function
‘numerical_kernel’ in Figure 1.4 is a small but numerically intensive part of the program.
These functions can effectively be analyzed using state-of-the-art floating-point analyzers when
provided with preconditions bounding the input ranges of the kernel. However, obtaining
such preconditions manually is challenging as the kernels are nested behind several loops and
function calls, as in the N-body program. To compute these ranges automatically, a scalable
program analysis technique without sophisticated floating-point reasoning could be used.

Based on this observation, we propose a two-phase analysis framework that combines
different program analyses to (conditionally) verify the absence of special values and cancellation
errors in numerical kernels ‘concealed’ in large programs. First, we utilize a scalable program
analysis to infer the ranges of inputs of a kernel in the context of the containing application. In
the second phase, a sound floating-point analyzer assumes these ranges to verify the kernels.
The verification may be conditional as it is performed under the assumption that the computed
ranges precisely describe possible values of the kernel inputs.

We have developed a tool called ‘Blossom’ that automatically infers the ranges of numerical
kernels. Our evaluation shows that our framework can handle C and C++ programs with
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def controller_tora(in: Vector): Vector = {

weights1 = Matrix(List(List(-0.102887,...,0.015634),...,List(-0.152597,...,-0.072199)))

bias1 = Vector(List(0.157552,...,0.165616))

layer1 = relu(weights1 * in + bias1)

weights2 = Matrix(List(List(0.14632,..., -0.032045),...,List(-0.089955,...,0.021892)))

bias2 = Vector(List(0.205404,...,0.184322))

layer2 = relu(weights2 * layer1 + bias2)

weights3 = Matrix(List(List(-0.119052,..., -0.01671),...,List(0.116748,...,0.217796)))

bias3 = Vector(List(0.179621,...,0.265042))

layer3 = relu(weights3 * layer2 + bias3)

weights4 = Matrix(List(List(-0.036561,...,0.264104)))

bias4 = Vector(List(10.197819))

out = linear(weights4 * layer3 + bias4)

return out

} /* ensuring error <= 1e-3 */

Figure 1.5: Network Architecture of Tora Controller

several numerical kernels, complex programming structures, and over 2K lines of code. We
used the computed kernel ranges generated by Blossom and could conditionally prove the
absence of special floating-point values and cancellation errors for several kernels. Additionally,
we reported overflow and cancellation errors in some cases, subsequently confirmed through
counter-example generation or manual inspection. These results are beyond the capabilities of
state-of-the-art static and dynamic analysis techniques.

Solution 3: Mixed Precision Quantization of Neural Networks In the final part of the
thesis, we present the first sound and fully automated mixed-precision fixed-point quantization
technique that specifically targets feed-forward deep neural networks.

We explain the motivation of our approach using a NN shown in Figure 1.5 written in a small
domain-specific language. This NN, taken from [67], is a fully connected feed-forward neural
network consisting of 4 inputs, 3 hidden layers, 20, 800 parameters (including both weights
and biases), and 1 output. The objective of this NN is to control translational oscillations by
a rotational actuator. Assuming an error bound of 1e− 3, our goal is to soundly quantize the
network and generate a fixed-point implementation that can be directly synthesized into an
FPGA.

Among the existing techniques, only Daisy [54] can generate a sound mixed-precision
fixed-point version of a program that guarantees a predefined error bound. In order to use Daisy,
we converted the matrix and vectors to simple variables and unrolled the corresponding loops
in Figure 1.5. However, after 5 hours, Daisy timed out and could not generate an optimized
implementation for the network.

The key insight of our solution lies in recognizing that quantizing NN variables and constants
while ensuring a roundoff error bound is fundamentally an optimization problem. This problem
involves integer decision variables that represent the discrete choices of the number of bits to
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use for NN operations. Additionally, we need real-valued constraints to ensure that the total
error of the neural network remains within the specified bound and no overflow occurs.

Based on the above idea, we formulate the sound mixed-precision fixed-point quantization
of NNs as a mixed integer linear programming (MILP) problem. A naive formulation, however,
results in non-linear constraints that are computationally intractable. We show how to use
over-approximations to relax the problem to linear constraints that are efficiently solvable.

We have developed a fully automatic prototype tool called ‘Aster’, which generates a
mixed fixed-point precision implementation that satisfies the error bound (with respect to
real-valued input) and minimizes a customizable cost function. These implementations can
be directly synthesized on FPGAs. Though Aster is primarily designed for continuous feed-
forward regression neural networks, our proposed approach can be extended to other types
of neural networks that have sparse matrices and activation functions that can be piece-wise
linearized [175].

We have evaluated Aster extensively on NN embedded controller benchmarks from the
literature [131, 111, 90]. Our results show that Aster is substantially faster and more scalable
than Daisy, especially for larger networks with thousands of parameters, with improvements in
optimization time on average of ∼ 67%.

1.4 Outline

We explore three avenues to expand the horizons of current finite-precision analysis and
optimization: probabilistic analysis, scalable static and dynamic analyses, and optimization.
Below, we provide an overview of the structure and chapters included in the thesis.

Chapter 2 presents the essential background on finite-precision formats, various types of errors
that arise in computations, existing techniques for finite-precision error analysis and
optimization, and probability propagation. We consider these concepts and techniques as
fundamental baselines for the later chapters.

Chapter 3 presents a novel probabilistic analysis that captures the effects of probabilistic inputs
and the numerical errors on discrete decisions. Our analysis targets both floating-point
and fixed-point programs.

This chapter corresponds to the paper that appeared as part of the ESWEEK-TCAD special
issue and was presented at EMSOFT’18 1. The prototype tool is publicly available on
Zenodo: https://doi.org/10.5281/zenodo.8042198.

Chapter 4 introduces the first sound probabilistic error analysis for floating-point programs that
considers probability distributions of inputs and analyzes roundoff errors probabilistically.

The material presented in this chapter is based on the publication at iFM’19 2. Our
prototype tool PrAn implemented as an extension of the previous work, is also available
on Zenodo: https://doi.org/10.5281/zenodo.8042198.

https://doi.org/10.5281/zenodo.8042198
https://doi.org/10.5281/zenodo.8042198
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Chapter 5 proposes a two-phase analysis for conditional verification of special floating-point
values and cancellation errors in complex numerical functions embedded within larger
programs.

The content of this chapter corresponds to the publication at TACAS’21 3. Our prototype
tool ‘Blossom’ is publicly available on Zenodo: https://doi.org/10.5281/zenodo.8043359.

Chapter 6 presents the first sound and fully automated mixed-precision quantization technique
that specifically targets deep feed-forward neural networks.

The work presented in this chapter is based on the publication that appeared as part of
the ESWEEK-TECS special issue and was presented at EMSOFT’23 4. The tool ‘Aster’ is
publicly available on Zenodo: https://doi.org/10.5281/zenodo.8123416.

Chapter 7 reviews the extensive body of related work in automated numerical error analysis
and optimization.

Chapter 8 concludes the thesis and explores possible future directions.

1.5 Publications

The content of the thesis is based on the following publications in peer-reviewed conferences
and journals. Although I am the primary author of these papers, I will use the academic ‘we’
throughout the thesis to acknowledge the support and contributions of my collaborators, without
whom this work would not have been possible.

1. Debasmita Lohar, Eva Darulova, Sylvie Putot, and Eric Goubault, “Discrete Choice in the
Presence of Numerical Uncertainties”, in International Conference on Embedded Software
(EMSOFT) published in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2381-2392, Nov. 2018, doi:10.1109/TCAD.2018.2857320

2. Debasmita Lohar, Milos Prokop, and Eva Darulova, “Sound Probabilistic Numerical
Error Analysis”, in International Conference on Integrated Formal Methods (IFM), vol 11918,
pp. 322-340, 2019, doi:10.1007/978-3-030-34968-4_18

3. Debasmita Lohar, Clothilde Jeangoudoux, Joshua Sobel, Eva Darulova, and Maria Chris-
takis, “A Two-Phase Approach for Conditional Floating-Point Verification”, in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), vol. 12652, pp. 43–63, 2021, doi:10.1007/978-3-030-72013-1_3

4. Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, and Eva Darulova, “Sound
Mixed Fixed-Point Quantization of Neural Networks”, in International Conference on
Embedded Software (EMSOFT) published in ACM Transactions on Embedded Computing
Systems, vol. 22, no. 5s, pp. 1–26, Sept. 2023, doi:10.1145/TECS.2023.3609118
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2Background

In this section, we lay the essential groundwork that serves as a fundamental baseline for
this thesis. We begin by introducing finite-precision formats, arithmetic, and the errors that
arise during computation. Then, we present the state-of-the-art techniques that estimate
finite-precision ranges for programs and compute bounds on finite-precision errors.

Furthermore, we present an existing technique for probability propagation 1, which plays an
essential role in the first part of the thesis. Our proposed techniques presented in chapters 3 and
4 are built on these analyses to propagate input distributions through numerical computations.

Finally, we present the important background of finite-precision optimization, which seeks
to minimize resources while remaining within specified error bounds.

2.1 Finite-Precision Formats

Implementing real-valued arithmetic on hardware introduces the need for using finite-precision
arithmetic due to the inherent limitations in representing real numbers with a finite number of
precision bits. This section will delve into the two most frequently used finite-precision formats
in numerical programs: floating-point and fixed-point representation.

2.1.1 Floating-Point Representation

Floating-point representation [85] is the most commonly used method for expressing real
numbers in finite precision. A floating-point number, denoted by x, can be represented as
follows:

x = (−1)s ×m× βe (2.1)

Here, s ∈ {0, 1} determines the sign of the number. The significand, denoted as m, is given
by | M | ×β1−p, where β stands for the radix or base, and p represents the precision. The
significand consists of one digit before the radix point and up to p− 1 digits after the point. The
exponent e is an integer, such that emin ≤ e ≤ emax, that determines the scaling of the number.

To ensure a more expansive range of representable values while maintaining precision,
the normalized representation of floating-point numbers is commonly employed. In this
representation, the most significant bit of the significand is assumed to be 1. Consequently, the
exponent e determines the position of the radix point, allowing both large and small numbers
to be represented. This representation also ensures uniform spacing between consecutive

1Other probabilistic analyses, similar or complementary to our techniques, are described in chapter 7

13



14 chapter 2. background

precision word size sign exponent significand exponent bias

single 32 1 8 23 127

double 64 1 11 52 1023

quad 128 1 15 112 16383

Table 2.1: Floating-point formats specified by IEEE 754 standard and values for exponent bias

representable numbers across the entire range.

IEEE Standard for Floating-Point The IEEE Standard for Floating-Point Arithmetic (IEEE
754-2019) [100] governs the computation and standardized representation of floating-point
numbers, their operations, and rounding behavior with radix 2 and 10. For the scope of this
thesis, we center our focus on the extensively employed binary floating-point numbers utilizing
a base of 2.

Within this standard, a normalized representation for floating-point numbers assumes that
the most significant bit of the significand is perpetually set to 1. Consequently, in formats
adhering to the IEEE specification, there is no requirement to explicitly store the first bit of the
significand. Instead, only the trailing significand (p-1 bits) is stored, which is often referred to as
the fraction.

Given that the exponent’s range spans positive and negative values, a biased representation
is employed in this standard. In single precision, where the exponent is allotted 8 bits, the
bias is set at 127 (for double precision, it is 1023). This implies that if the exponent bits are
interpreted as an unsigned integer, the effective exponent of the floating-point number is derived
by subtracting 127 (or 1023) from this integer value. This unbiased exponent, derived through
subtraction, serves to differentiate it from the biased exponent.

The IEEE standard defines three distinct binary precision levels: single (32-bit), double
(64-bit), and quad precision (128-bit). The key attributes for these precision levels, including
word size, the sign bit, exponent field size, significand size, and the respective exponent bias, are
summarized in Table 2.1. This standardized categorization brings consistency and comparability
across various computing platforms, facilitating uniform representation and computation of real
numbers in finite precision.

Rounding Modes The IEEE standard defines the following four rounding modes that determine
how results of arithmetic operations are rounded when they cannot be represented exactly in
the chosen precision.

1. Round to nearest (ties to even): This mode rounds to the nearest representable value, and
in the event of a tie, it selects the value with the even least significant digit. In the case of
a tie and both having an odd least significant digit (this can happen only at precision 1,
possibly when converting a number like 2.5 into a decimal string), the value with a larger
magnitude is selected.



2.1 finite-precision formats 15

2. Round up (toward +∞): This mode rounds up to the next representable value larger than
the exact result.

3. Round down (toward −∞): This mode rounds down to the next representable value
smaller than the exact result.

4. Round toward zero: This mode simply truncates the extra bits beyond the desired precision.

The IEEE standard requires that the result of addition, subtraction, multiplication, division, and
square root be exactly rounded. That is, the result must be computed exactly and then rounded
to the nearest floating-point number (using ties to even).

Special Values The IEEE floating-point format also defines special values when the exponent
field is composed entirely of 0s or 1s.

When the exponent has only 0s, the corresponding number is referred to as a denormalized
or subnormal number. In this scenario, a 0 is implicitly assumed before the binary point.
For instance, in both single and double precision, denormalized numbers follow the pattern
(−1)s × 0. f × 2−126 and (−1)s × 0. f × 2−1022, where f represents the fraction and s denotes the
sign bit.

Furthermore, the value zero is also considered a denormalized number with all fractional
bits set to 0. It may be noted that despite their equivalence in floating-point comparison, −0 and
+0 are different.

Infinity values (+∞ and −∞) are indicated by an exponent consisting entirely of 1s and a
fraction entirely of 0s. The sign bit distinguishes between positive infinity and negative infinity.
Operations involving infinities adhere to well-defined rules in IEEE floating-point format and
hence are propagated through the computations.

The concept of NaN (Not a Number) is employed to signify a value that does not represent a
real number. NaN values are represented by a specific bit pattern featuring an exponent of all 1s
and a non-zero fraction. There are two types of NaN: QNaN (Quiet NaN) and SNaN (Signalling
NaN). A QNaN typically is a result of an undefined mathematical operation and propagates
freely through most arithmetic operations without signaling exceptions. QNaN is characterized
by the highest fraction bit being set. An SNaN, on the other hand, has the highest fraction bit
cleared and is used to signal an exception in the operations.

Floating-point stands as an efficient approach for finite precision, and operations in this format
are supported by dedicated hardware units known as Floating-Point Units (FPUs). These FPUs
streamline the execution of floating-point operations, offering exceptional computational speed
while adhering to the IEEE 754 standards. FPUs are well-integrated into modern processors.

Nevertheless, certain scenarios, particularly when involving high-precision computations,
may encounter limitations in hardware support. In such cases, performing high-precision
floating-point computations requires resorting to software simulation, incurring substantial
computational overhead. Consequently, implementing floating-point operations on resource-
constrained applications may be too expensive due to the unavailability of dedicated hardware
support or the high computational cost associated with software simulation-based approaches.
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2.1.2 Fixed-Point Representation

Fixed-point representation emerges as a compelling alternative to the floating-point format [176].
Unlike floating-point, fixed-point maintains a constant number of decimal places that cannot be
altered dynamically. Fixed-point representation is particularly well-suited for scenarios with
only integer arithmetic hardware support, making it a common choice for embedded devices
that often lack a dedicated floating-point unit due to resource constraints.

In a fixed-point implementation, all program variables and constants are represented using
integers and have an (implicit) representation as a triple <s, Q, π>, where:

• s ∈ {1, 0} indicates the sign bit (1 for signed, 0 for unsigned),

• Q ∈N denotes the total word length (overall number of bits), and

• π ∈N represents the position of the binary point, counted from the least significant bit.

The representation effectively divides the overall number of bits into an integer part, I, and a
fractional part, π. (Since the position of the binary point determines the number of bits allocated
to the fractional part, we use the same notation for the fractional part.) The number of integer
bits is computed as I = Q− π − 1. The range of representable numbers in this integer range is
defined as [−2I , 2I]. The fractional part controls the precision of a variable or an operation—the
larger the number of fractional bits, the more precisely the value can be represented.

Arithmetic operations on fixed-point variables can be implemented efficiently using only
integer arithmetic and bit-shifting [14] or can use equivalent efficient hardware implementations,
e.g., on FPGAs.

Fixed-point representation also offers the advantage of efficient bit utilization. Unlike
floating-point numbers, which come in only three standard precisions and have a fixed number
of bits allocated for the significand, fixed-point representation allows for assigning any number
of bits as a valid precision. This inherent flexibility provides manual control over precision and
accuracy, enabling fine-tuning each operation as required.

However, employing fixed-point representation does present certain challenges. The integer
bits must be decided before compilation for all variables and constants of a program. These
integer bits should be sufficient to prevent overflow during computations. Additionally, within
the same program, variables may possess differing formats (varied numbers of integer and
fractional bits). Hence, if the formats of two operands of an arithmetic operation do not match,
the operands must be aligned with respect to the binary point prior to computation. Thus,
writing such fixed-point programs manually is difficult and prone to errors.

2.2 Finite-Precision Analysis

Finite precision representation and its computations introduce roundoff errors, potentially at
every operation. These errors are generally small, but they can unexpectedly propagate through
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numerical computations and can make the results absolutely meaningless [97]. Hence, it is
important to compute a bound on these errors.

Two different approaches exist to soundly bound these errors. One approach employs
global optimization techniques [132, 140, 162, 56], while the other relies on data-flow analysis
techniques [60, 64, 53, 52, 55]. Both these techniques compute the errors in the worst case, i.e.,
assume that the largest error always happens.

The optimization-based techniques reduce the computation of roundoff errors as an opti-
mization problem, aiming to maximize the errors. Tools like real2Float [132], FPTaylor [162],
and Satire [56] leverage symbolic Taylor expansions to formulate the maximization objective,
whereas Precisa [140] employs a parametric abstract analysis for roundoff errors.

In contrast, data-flow analysis-based techniques use the domains of interval arithmetic (IA)
[139] and affine arithmetic (AA) [62] to track ranges, compute worst-case errors at each operation,
and propagate both the ranges and errors throughout the computation. In this thesis, we adopt
data-flow analysis-based approaches to compute roundoff errors of numerical programs. Hence,
the following sections center on this particular approach, where we delve into the details of the
abstract domains of IA and AA for ranges and roundoff errors.

2.2.1 Interval Arithmetic

In numerical computations, the most natural way of presenting the ranges is using intervals. An
interval X is defined with a lower and an upper bound [lx, ux], where a variable x ∈ X can take
any value between these bounds, i.e., lx ≤ x ≤ ux. When the lower and upper bounds are equal,
the interval becomes a point interval. Basic arithmetic operations on intervals are defined as:

[lx, ux] ◦ [lx, ux] = [min
l∈R

l, max
u∈R

u], R ∈ {lx ◦ ly, lx ◦ uy, ly ◦ lx, ly ◦ ux} (2.2)

where, ◦ represents the operations, i.e., ◦ ∈ {+,−, ∗, /}. The square root is computed
analogously. For unary, operations are applied to the lower and upper bounds of the variable.

Despite its efficiency, IA has limitations. It cannot track correlations between variables
(textitdependency problem). In IA, X− X does not produce [0, 0]; instead, it yields [lx − ux, lx +

ux] whose diameter is twice the width of X. This limitation leads to high over-approximations
of the true ranges, especially in complicated expressions or long iterative computations.

2.2.2 Affine Arithmetic

To address the dependency problem and track linear correlations, affine arithmetic (AA) was
introduced. An affine variable x̂ is represented as an affine expression on the noise symbols ε i:

x̂ := x0 +
n

∑
i=1

xiε i, ε i ∈ [−1, 1] (2.3)
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where x0 is the central value of the affine form, and the co-efficients x1, · · · xn, which are called
partial deviations, determine the deviation of noise symbols ε1, · · · εn around x0. The number
of noise symbols depends on the specific affine form, and different affine forms can use a
varying number of noise symbols, some of which may be shared with other affine forms, thereby
capturing correlations between variables.

Let us return to the example of subtracting a variable from itself (x− x). In AA, the difference
between an affine form and itself is identically zero because both operands of the subtraction
share the same noise symbols with the same coefficients.

An affine form x̂ computes the ranges of the corresponding variable x as follows:

x ∈
[
x0 −

n

∑
i=1
| xi |, x0 +

n

∑
i=1
| xi |

]
where ∑n

i=1 |xi| defines the total deviation from x0.

AA can compute precise results for linear operations that are computed term-wise:

αx̂ + βŷ + ζ = (αx0 + βy0 + ζ) +
n

∑
i=1

(αxi + βyi)ε i

However, non-linear operations are more involved as they need to be approximated by
linearization. For example, a multiplication operation of two affine variable x̂ and ŷ is defined as
follows:

x̂ ∗ ŷ = x0y0 +
n

∑
i=1

(x0yi + y0xi) + Tεn+1 (2.4)

where Tεn+1 is the upper bound for the approximation error for the linearization. Other
non-linear functions are computed similarly. Due to this approximation, the results of non-linear
operations lose correlation with the operands and are less precise. For more details on AA, we
refer the readers to [62].

2.2.3 Computing Roundoff Errors

Roundoff errors can be expressed in terms of either absolute errors or relative errors. For a
real-valued function f (x) with a real-valued input x in a range [a, b], the absolute error is defined
as follows:

ϵabs = max
x∈[a,b]

| f (x)− f̃ (x̃) | (2.5)

In this equation, f̃ (x̃) represents the finite-precision counterpart using a finite-precision input
x̃. The relative error is applicable when the evaluation of f (x) does not involve zero, and it is
defined below.

ϵrel = max
x∈[a,b]

| f (x)− f̃ (x̃)
f (x)

| (2.6)
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However, relative errors can only be defined for programs where f (x) does not include zero.
Though there exist some methods to bound relative errors [108], most state-of-the-art tools focus
on absolute error analysis [60, 64, 53, 52, 55]. Our work also focuses solely on this type of analysis.
Hence, this section will delve into techniques for computing absolute errors.

Computing absolute errors in an automated way using Equation 2.5 is not feasible for several
reasons. First, the floating-point function f̃ (x̃) with floating-point input x̃ is highly irregular
and discontinuous, making it unsuitable for automated analysis. Secondly, the real-valued
evaluation of the function is not available for most inputs and functions. Hence, the computation
of the finite precision function f̃ (x̃) is performed by replacing all operations, variables, and
constants with the following abstraction:

x◦̃y = (x ◦ y)(1 + e) + d, | e |≤ ϵM, | d |≤ δM, where ◦ ∈ {+,−,×,÷} (2.7)

The computation of the square root follows a similar approach, and the unary minus operation
introduces no roundoff errors. It is important to note that this abstraction assumes a rounding-
to-nearest mode, the standard default, and no overflow scenarios.

In Equation 2.7, ◦̃ denotes the finite-precision counterparts of operations present in {◦} set.
The symbol ϵM signifies the machine epsilon, relevant to normal values, and establishes the
upper limit on the relative error for a specific finite precision. The symbol δM dictates roundoff
errors for subnormal values. For floating-point precision, the values of ϵM and δM are 2−24

and 2−150 respectively for single precision, and 2−53 and 2−1075 for double precision. In the
fixed-point format, ϵM is defined by the number of bits dedicated to the fractional part (2−π,
following our notation of fixed precision highlighted in Section 2.1.2), while δM equates to 0.

Thus, the finite-precision implementation of a function f̃ (x̃) can be abstracted with e and d
as f (x, e, d) considering that there is no special value (NaN, infinity). This abstraction is used by
state-of-the-art roundoff error analysis tools that compute the absolute roundoff errors in the
worst-case and use the following equation:

ϵ ≤ max | f (x)− f (x, e, d) | (2.8)

where x is defined within the range [a, b] while e and d retain their previous definitions, and the
max function defines the error in the worst case.

Data-Flow based Error Analysis State-of-the-art data-flow analysis tools [60, 64, 53, 52, 55] for
roundoff errors systematically traverse the abstract syntax tree (AST) of an arithmetic program
and compute worst-case roundoff errors at the output. The process involves two steps:

1. range analysis that computes real-valued ranges

2. error analysis that propagates errors from subexpressions and computes the new worst-case
roundoff errors using the ranges computed in the first step.

Thus, the ranges and errors are propagated through the computation to produce a sound range
of the output and a sound bound on the roundoff errors in the final result. Both these steps
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can be performed in a single traversal of the AST or as separate passes. Using two separate
passes enhances modularity, enabling the utilization of diverse methods, such as the domains
of interval arithmetic (IA) or affine arithmetic (AA), for precise range and error computation.
This adaptability provides a better accuracy efficiency tradeoff, making it feasible to customize
strategies based on the program’s specifics and the objective of the analysis.

A fundamental challenge in data-flow analysis is minimizing over-approximations in the
computed errors due to non-linear operations, as both IA and AA methods tend to overestimate
the ranges. Existing tools utilize different strategies to reduce over-aproximation.

For instance, tools like Fluctuat [64], Rosa [53], and Daisy [55] combine interval subdivision
with interval arithmetic (IA) and affine arithmetic (AA). In this approach, the input domain is
subdivided into subintervals of typically uniform width, and then separate error analyses are
performed on each subinterval. Finally, the overall error is computed as the maximum error
over all subintervals. This method computes tighter error bounds, as smaller input domains
tend to generate reduced over-approximations. However, this approach does come at the cost of
increased analysis time, particularly for functions involving multiple variables. Another strategy
to reduce over-approximation is to use Satisfiability Modulo Theories (SMT) solvers. Both
Rosa and Daisy incorporate interval arithmetic and a non-linear SMT solver. This combination
iteratively refines error bounds over the course of the analysis, thus providing tighter error
bounds. However, the runtime of this method depends heavily on the SMT solver.

All these roundoff error analysis tools compute errors in the worst-case scenario. However,
such bounds are often overly pessimistic. In practice, these worst-case bounds may not be
realized, and certain applications might be tolerant of slightly larger but infrequent errors. The
current roundoff error analysis techniques are unable to account for such nuanced (probabilistic)
behavior. Additionally, these techniques do not offer insights into the distribution of variables
within the provided input ranges.

2.3 Probabilistic Static Analysis

While the state-of-the-art analysis does not handle probabilistic errors, there are approaches
that can compute probabilistic ranges by considering input distributions and propagating them
through numerical computations. These methods extend IA and AA further with Interval
Dempster Shafer (DSI) structures and probabilistic affine arithmetic. In the following sections, we
review the essential background of these probabilistic domains and introduce the terminologies
that we will use in chapters 3 and 4.

2.3.1 Dempster Shafer Interval Analysis

Interval Dempster-Shafer (DSI) structures [158] associate probabilities (or weights) with a set of
intervals. These intervals, together with the probabilities, are called focal elements. On these
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focal elements, the arithmetic operations are defined that allow the probabilities to propagate
through the numerical computation. Here, we provide a short overview of the DSI structures
and the arithmetic operations. For more details, we refer the interested readers to [158, 71].

DSI Structure Formally, a DSI structure consists of a finite set of focal elements represented by
closed intervals, as follows.

d = {⟨x1, w1⟩, ⟨x2, w2⟩, · · · , ⟨xn, wn⟩} (2.9)

Here, xi ∈ I is a closed non-empty interval, wi ∈]0, 1] is the associated probability, and the sum
of all the weights is 1: ∑n

i=1 wi = 1. The focal elements express that the value of a variable
represented by d is within xi with probability wi, but the variable can (non-deterministically)
pick any value within the interval xi. We show an example of a DSI structure below.

d = ⟨[−1, 0.25], 0.1⟩, ⟨[−0.5, 0.5], 0.2⟩, ⟨[0.25, 1], 0.3⟩, ⟨[0.5, 1], 0.1⟩, ⟨[0.5, 2], 0.1⟩, ⟨[1, 2], 0.2⟩

The DSI d represents the set of probability distributions with support [−1, 2], where the
probability of picking a value between -1 and 0.25 is 0.1, the probability of picking a value
between -0.5 and 0.5 is 0.2, and so on.

−1 −0.5 0.250.5 1 2

1

Figure 2.1: P (in green) and P (in violet) soundly bounds the distribution of x(in black)

An alternative way to represent these probabilities is to use a pair of discrete cumulative
distribution functions (CDFs) P and P such that P is left-continuous, P is right-continuous step
functions for all values of the variable x. Such a pair [P, P] is known as discrete probability box or P-
box [71], that encloses all probability distributions whose CDF P satisfy ∀x, P(x) ≤ P(x) ≤ P(x).
Figure 2.1 shows a P-box graphically that bounds the actual distribution.

Arithmetic Operations Let dX = {⟨xi, wi⟩, i ∈ [1, n]} and dY = {⟨yj, vj⟩, i ∈ [1, m]} be two
DSI structures. We want to compute dZ = dX ⊙ dY where ⊙ ∈ {+,−,×,÷}. These arithmetic
operations distinguish the following two cases.

1. Independent: In case two DSIs dX and dY are independent, computing the resultant DSI
structure dZ = dX ⊙ dY is straightforward – intervals are computed with usual interval
arithmetic as shown in Section 2.2.1 and the weights are simply multiplied.

dZ = {⟨zi,j, ri,j⟩ | i ∈ [1, n], j ∈ [1, m]} where, zi,j = xi ⊙ yj, ri,j = wi × vj (2.10)
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It may be noted that the number of focal elements grows exponentially with each of these
operations.

2. Dependent with unknown dependency: The dependent case is more involved as it needs
to consider any dependency between dX and dY to compute a sound over- and under-
approximation of the probability. Thus, for arithmetic operations on dependent DSIs, the
alternate representation of the P-box is more suitable. The solutions are first computed
for P-boxes, and then the resultant P-boxes are transformed into DSIs. Here, we briefly
explain the method proposed in [24], which we have used for our analysis.

To compute the solution dZ = dX ⊙ dY as a P-box [PdZ , PdZ ], we first compute the arithmetic
operation on the intervals of all pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi ⊙ yj = [zi,j, zi,j]. However, computing the probabilities as before
(ri,j = wi × vj) is not possible. We only know the following constraints, corresponding to
the rows and columns of this matrix:

∀i ∈ [1, n],
m

∑
j=1

ri,j = wi ∀j ∈ [1, m],
n

∑
i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound on the cumulative distribution
function at every point in the domain. Since the P-boxes are step functions; we effectively
only need to perform this computation at the endpoints of the intervals in the interval
matrix. The maximization, resp. minimization of the cumulative distribution function can
be phrased as a linear program:

FdZ(z) = minimize ∑zi,j≤z ri,j

such that ∀i ∈ [1, n],
m
∑

j=1
ri,j = wi

∀j ∈ [1, m],
n
∑

i=1
ri,j = vj

Thus, we compute the lower P-box. The constraint ∑zi,j≤z ri,j expresses that all ri,j’s have to
be taken into account, whose corresponding intervals are definitely below z. The formula
for PdZ is analogous.

After generating the resultant P-box [PdZ , PdZ ] we need to convert it back to the DSI dZ. The
conversion is straightforwardly done by first obtaining the intervals xi by matching the
lower and upper P-Box, then weights wi are computed from the height of the steps.

The dependent arithmetic is clearly costly and, in addition, may lose some precision. It is thus
important to keep track of dependencies between variables differently in order to be able to
apply independent arithmetic operations as much as possible. This can be done by utilizing
affine arithmetic, which already takes into account linear dependencies and allows to use of
independent operations on the noise symbols, thus improving both the efficiency and the
accuracy of the method.
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2.3.2 Probabilistic Affine Analysis

DSI structures effectively propagate probability distributions with intervals; however, they cannot
track linear dependencies between variables. To address this limitation and track dependency
information, Bouissou et al. [30] extended affine arithmetic with DSIs. This extension enables
DSIs associated with noise symbols to compute probability distributions while affine arithmetic
handles the (linear) dependency information between them.

Probabilistic Affine Forms Concretely, a probabilistic affine form for a variable x is computed
by summing the weighted DSIs associated with each noise symbol:

x̂ = x0 +
n

∑
i=1

xidϵi +
m

∑
j=1

xjdηj (2.11)

This representation explicitly distinguishes between independent noise symbol dϵi and dependent
noise symbol dηj with an undefined dependency. Both these noises are basically DSIs with
support [−1, 1]. Thus, noise symbols in standard affine arithmetic track nondeterministic
uncertainty, while probabilistic affine forms can capture detailed probabilistic information.

Arithmetic Operations Linear and unary arithmetic operations over probabilistic affine forms
work exactly the same as standard affine form operations as presented in Section 2.2.2, and the
noise DSIs remain the same. However, for non-linear operations, like multiplication, bounding
the non-linear part requires generating a new noise symbol with unknown dependency along
with the existing noises.

Let us assume x̂ and ŷ to be two probabilistic affine forms with dϵi dηj corresponding to
independent and dependent noise terms, respectively. For the resultant probabilistic affine form
ẑ = x̂× ŷ, the affine term is computed using affine arithmetic rules, and the existing noise terms
remain the same. Additionally, a new noise symbol dηm+1 is introduced to represent the unknown
dependency, and its definition is given below. For more details, we refer readers to [30].

dηm+1 =
1
T

(
n

∑
i=1

m

∑
j=1

(xiyj + xjyi)dϵi × dηj +
n

∑
i=1

n

∑
k>i

(xiyk + xkyi)dϵi × dϵk

+
m

∑
j=1

m

∑
l>j

(xjyl + xlyj)dηj × dηl +
1
2
(

n

∑
i=1

xiyid2
ϵi
+

m

∑
j=1

xjyjd2
ηj
)

)

where T is defined as follows:

T =
n

∑
i=1

m

∑
j=1
| xiyj + xjyi | +

n

∑
i=1

n

∑
k>i
| xiyk + xkyi |

+
m

∑
j=1

m

∑
l>1
| xjyl + xlyj | +

1
2
(

n

∑
i=1
| xiyi | +

m

∑
j=1
| xjyj |)
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The arithmetic operations corresponding to independent and dependent noise terms become
independent and dependent arithmetic, respectively.

The abstract domains of DSI and probabilistic affine forms have been utilized to propagate
input distributions along with ranges through numerical computation. However, these methods
have not been previously used in the context of finite-precision error analysis. In this thesis, we
extend and adapt these methods to the context of the effects of discrete decisions and roundoff
error computation.

2.4 Finite-Precision Optimization

Finite-precision roundoff error analysis centers on assessing the precision of numerical programs.
Increasing precision decreases roundoff errors, but there is always a tradeoff between accuracy
and the efficiency or cost of resources. The more precise the computation, the less resource-
efficient it is. This tradeoff is addressed by the finite-precision optimization. Various strategies can
be employed to optimize numerical programs, from enhancing performance while maintaining
accuracy bounds to improving accuracy while preserving performance.

This thesis utilizes both of these optimization aspects. We employ expression rewriting to
increase accuracy and mixed precision tuning to reduce the cost of resources in chapters 5 and 6,
respectively. In the following section, we provide details of these techniques implemented in the
state-of-the-art tool Daisy[54], which serves as our chosen baseline framework. We will discuss
other relevant techniques and tools within the context of related work in chapter 7.

Expression Rewriting In finite-precision arithmetic, several properties that hold true in real
arithmetic no longer apply. For instance, the simple associative property does not hold in finite
precision, i.e., (a + b) + c ̸= a + (b + c). This discrepancy arises from the distinct roundoff
errors that occur when adding a and b before adding c and when the order of addition is altered.
This non-associativity presents an avenue for optimization, specifically in the form of rewriting
expression evaluation orders to minimize roundoff errors.

However, determining the most optimal expression rewrite to minimize roundoff errors is a
complex task, given the many ways to order an expression. Consequently, the search space for
the optimal evaluation order can be expensive. Thus, exhaustive enumeration is impractical for
expressions containing a large number of operations.

The state-of-the-art tool, Daisy [54], offers a rewriting optimization that finds a better ordering
of the arithmetic expressions in terms of roundoff errors. This optimization strategy relies on a
genetic algorithm-based search approach, utilizing real-valued properties like associativity and
distributivity to rearrange the expressions.

Daisy starts this optimization with an initial population consisting of a predetermined
number of copies of the original expression. In each search iteration, the population is sorted
based on their respective rounding errors. The most suitable candidate’s order of evaluation is
then randomly mutated while adhering to the rules of real-valued identities, and the errors are
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computed again. This iterative process is repeated for 30 iterations, and finally, it returns an
expression with the smallest seen roundoff error.

It may be noted that this method employs a heuristic search, which is incomplete. However,
the technique has demonstrated remarkable effectiveness in discovering expressions with smaller
roundoff errors than the initial expression.

Mixed-Precision Tuning Another optimization method is to increase efficiency or reduce
resource cost while being inside an accuracy bound. Precision assignment focuses on this
particular optimization.

A uniform precision can be assigned to all variables, constants, and operations in a program.
However, this process may not be optimal in terms of performance. For instance, if a single
precision is insufficient at a certain point in the program, with uniform precision, we need to
upgrade all operations to a higher precision to guarantee the error bound. However, not all
operations have the same impact on the overall accuracy of the program.

Therefore, assigning different precisions to different operations can be more efficient to
achieve a target error bound while reducing the cost of resources. This approach, known as
mixed precision optimization, allows for a more flexible and efficient program implementation.

Various techniques exist for mixed-precision tuning of numerical programs [39, 54, 49, 21].
Here, our primary focus is on the mixed-precision tuning incorporated in Daisy [54]. Daisy’s
mixed precision tuning works for both floating-point and fixed-point programs; we use the
fixed-point precision tuning as a comparative reference in chapter 6.

Daisy [54] assigns different precisions to different program inputs, variables (including
intermediate ones), and constants such that a user-defined error bound is met. For fixed-point
programs, the process starts by assigning one bit and gradually increasing the number of
bits uniformly for all variables until the error bound is met. Alternatively, for floating-point
programs, Daisy initializes all variables with the highest available precision and gradually
systematically reduces their precision until it becomes impossible to lower the precision further
while maintaining the specified error bound.

In the next step, Daisy employs a heuristic search based on delta-debugging to assign
precision to variables. It uses a static sound error analysis and a static (but heuristic) performance
cost function to guide the search. It first divides the list of all variables into two equal-sized
partitions and recursively attempts to reduce the precision of these individual partitions. The
recursion halts when a precision assignment is discovered that satisfies the error bound.

Given that multiple valid type assignments could be feasible, Daisy employs the cost function
to identify the assignment with the lowest cost for optimal performance. It supports several
different cost functions. For instance, an area-based cost function for fixed-point programs
essentially counts the number of bits assigned to all variables. For floating-point programs, a
simple abstract cost function is used that assigns 1, 2, and 4 costs to single, double, and quad
arithmetic and cast operations, respectively. There is also a platform-specific cost function that
assigns distinct costs to each floating-point operation based on the execution time of individual
operations performed in isolation.
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Daisy’s mixed-precision tuning demonstrates effectiveness for small numerical programs,
especially those employing floating-point precision. In floating-point precision, there are limited
precisions to select from, which contributes to the success of this approach. However, for
fixed-point programs, due to the large choice (of combinations) of different precisions for
individual operations, the search space is huge. Consequently, the computational cost associated
with this heuristic search increases exponentially with the size of the program. Furthermore, for
mixed-precision tuning, Daisy lacks support for complex data structures, such as matrices and
vectors.
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State-of-the-art s finite-precision analysis of numerical programs primarily focuses on
bounding absolute roundoff errors in the worst-case. These worst-case analyses compute,
at each step of the computation, the largest error for a specified range of program

inputs, propagate these errors throughout the program, and thus, provide a bound on the
most significant roundoff error that could arise at the output. These analyses have efficiently
been applied to multivariate straight-line programs [57, 88, 162] with some limited support for
conditionals and loops [88, 89, 53].

However, none of these present techniques analyze finite-precision programs with discrete
decisions, i.e., a decision that is taken based on the results of numerical computations. Recall
our ‘controller’ example with a discrete decision from Figure 1.1:

res = ...; if(res < 400) raise_alarm() else do_nothing()

Such programs play crucial roles in various systems where decision-making is required, such as
determining whether to raise the alarm as our example controller, selecting among multiple
discrete control signals, and more. Additionally, machine learning classifiers are now being used
extensively in resource-constrained critical systems that decide if signals like heartbeat readings
are normal or abnormal [32].

Worst-case analysis for these programs leads to overly pessimistic results. Due to inevitable
roundoff errors, finite-precision executions will take different paths than the ideal real-valued
computations for at least some of the inputs. Worst-case analysis would simply conclude that
the program always takes the wrong branch, which is clearly not useful in practice.

Ideally, a program should make the correct decision for most inputs. Hence, in this case, a
more meaningful measure would be to guarantee that the probability of wrong execution, which
we refer to as the wrong path probability, is sufficiently low to ensure the safety of the application.
As all inputs may not be equally likely, to accurately estimate the wrong path probability, it is
essential to consider the probability distributions of the inputs and propagate them through the
computation.

In this chapter, we aim to compute sound bounds on wrong path probabilities for programs
with discrete decisions by considering the probability distributions of inputs. We explore two
state-of-the-art techniques to achieve this: exact symbolic probabilistic inference [82] and sound
probabilistic affine arithmetic [11]. These techniques enable us to propagate the probability
distributions in an exact or over-approximated way. We utilized these techniques to compute
wrong path probabilities for numerical programs from various domains, including embedded
systems, scientific computing, and machine learning.

27
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Our results show that exact probabilistic inference does not scale for the majority of our
benchmarks. Although probabilistic affine arithmetic scales well, it fails to compute tight bounds
on wrong path probabilities. To address this limitation, we extended the analysis with our
novel interval subdivision and reachability checks. Our technique subdivides the input domain,
identifies relevant subdivisions leading to incorrect program paths using reachability checks,
and performs probabilistic analysis only on those relevant subdomains. Thus, our technique can
efficiently compute accurate wrong path probabilities.

We have implemented the proposed technique as an extension to the state-of-the-art tool
Daisy [55]. Our tool can fully automatically compute sound wrong path probabilities for
floating-point and fixed-point programs with discrete decisions, considering uniform and
gaussian distributions of inputs.

Contributions To summarize, this work makes the following contributions:

a) we provide a precise problem definition and present, to the best of our knowledge, the first
sound analysis of the effects of numerical uncertainties on discrete decisions,

b) we extend an existing probabilistic static analysis with interval subdivision and reachability
checks,

c) we evaluate our analysis and the various design decisions that we make on a set of
representative embedded examples

d) we also show that while a combination of state-of-the-art symbolic probabilistic reasoning
provides exact results, it does not scale well, and

e) we implement our analysis in a prototype tool implemented on top of the existing worst-
case analysis tool Daisy which is publicly available on Zenodo (see https://doi.org/10.

5281/zenodo.8042198).

The material in this chapter is based on the publication titled ‘Discrete Choice in the Presence of
Numerical Uncertainties’ [166] co-authored with Eva Darulova, Sylvie Putot, Eric Goubault. Eva
Darulova contributed to the experiments using the symbolic inference technique and provided
extensive feedback on the writing of the paper, while Sylvie Putot and Eric Goubault provided
valuable feedback on the technical background.

3.1 Overview

In this section, we first describe the problem we are considering more precisely, introduce the
terminologies we will use throughout the following chapters, and present a high-level overview
of our approach using an illustrative example.

https://doi.org/10.5281/zenodo.8042198
https://doi.org/10.5281/zenodo.8042198
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res = -x1*x2 - 2*x2*x3 - x1 - x3

if (res <= 0.0) raise_alarm()

Figure 3.1: Running example of a non-linear controller

3.1.1 Problem Description

We focus on the finite-precision numerical programs that make discrete decisions based on
the computed numerical result. We define our input program, without the decision, as a real
mathematical function f : Rn → B, where Rn represents the multivariate real-valued input
domain and B represents the boolean output domain. The function f includes arithmetic
operations (+,−, ∗, /,√) as well as transcendental functions (sin, cos, exp, log).

In the hardware implementation of this function, it is represented as a finite-precision
function f̃ : Fn → B, where Fn represents the finite-precision input domain. Due to numerical
uncertainties, such as input uncertainties and round-off errors in both the input and computation,
the real function f and the finite-precision function f̃ may yield different results for the same set
of ideal inputs.

Our goal is to automatically compute a guaranteed bound on the probability that f and f̃
return different results. We will call this probability the wrong path probability (WPP). This
probability can never be zero because of the inevitable presence of numerical uncertainties.
However, ensuring that the probability is small enough for the application to be useful in practice
is important.

While our focus is primarily on straight-line numerical programs without conditionals or
loops, our approach can be generalized to handle nested conditionals and other discrete return
types by considering each path and return value separately.

We consider an example from [14], where an alarm can be raised based on the control
output calculated by a nonlinear controller in Figure 3.1. Here, x1, x2, x3 are the inputs of the
controller and may carry some uncertainties from the source. We want to compute the WPP of
this program.

3.1.2 Our Proposed Technique

We present an overview of our technique in Figure 3.2. It takes as input a finite-precision
program with probabilistic inputs and computes the WPP. We first compute a bound on the
numerical uncertainties and define an interval, which we refer to as a ‘critical interval,’ where
the program may make a wrong decision if the result falls within this interval. Next, we
propagate the probability distributions of the input variables to the result. Finally, by computing
the intersection between the critical interval and the probability distribution of the result, we
determine the probability of the program taking the wrong path. In the following sections, we
provide a detailed explanation of each of these parts of our solution.
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Figure 3.2: Overview of our approach

Bounding Numerical Uncertainties The numerical input program might take a wrong
execution path in the presence of input uncertainties, the roundoff errors that occur in the input,
and the roundoff errors that accumulate through numerical computation. Hence, we need to
compute a bound e on the roundoff error that can occur in the worst case during the computation
of a function f . Several techniques exist for this purpose, and in our approach, we utilize the
methods established in [55] that are based on interval and affine arithmetic. The details of how
we compute the roundoff error using these techniques are presented in Section 2.2.

In the context of our example program (see Figure 3.1), we consider the 16-bit fixed-point
roundoff error as the numerical uncertainty. To determine a bound on this uncertainty, we
utilized the Daisy and computed e = 0.2042266 as the worst case roundoff error.

Defining Critical Intervals The input program contains a discrete decision boundary where the
ideal and uncertain computations may diverge. This boundary is determined by a single threshold
value t. The numerical error (e) we computed in the previous step determines the maximum
possible deviation from this threshold in the worst case. Using this error, we define the critical
interval [t− e, t + e]. If the value of the computation falls into this interval, then the uncertain,
finite-precision computation may compute a different discrete result. The probability that the
ideal computation lies in [t− e, t + e] is thus a sound bound on the wrong path probability.

In our running example, the decision threshold t is set to 0.0. The computed value of e is
0.2042266. Therefore, the critical interval defined for this program is [−0.2042266, 0.2042266].

Propagating Probabilities Next, we proceed to propagate the input distributions through
the numerical computation to compute a sound bound on the probability that the result of
the numerical computation falls within the critical interval. We can express the wrong path
probability precisely as a probabilistic program as in Figure 3.3, where we reuse a specific
syntax proposed in [82]. We have added the roundoff error e with an assert statement in the
computation. Moreover, we choose uniform distributions for inputs.

There can be two entirely different approaches for propagating probability distributions.
One is using exact symbolic inference tools like PSI [82]. SI analyzes probabilistic programs
using symbolic domains, yielding precise distributions of the results. We can then utilize
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x1 := uniform(-15.0, 15.0);

x2 := uniform(-15.0, 15.0);

x3 := uniform(-15.0, 15.0);

res := -x1*x2 - 2*x2*x3 - x1 - x3;

error := 0.2042266; // computed externally

assert(0.0 - error <= res && res <= 0.0 + error);

Figure 3.3: Probabilistic program encoding the wrong path probability for Figure 3.1

numerical evaluators like Mathematica [102] to compute the wrong path probability (WPP). In
our experiments, we employed PSI and Mathematica for our benchmarks, details of which are
presented in Section 3.3.2. However, our experiments show that this method does not scale to
larger programs. Even for our small running example in Figure 3.3, we did not obtain any results
within 20 minutes.

The other alternative to using exact reasoning is an abstraction-based approach that uses
probabilistic affine forms to propagate uncertain distributions. The high-level algorithm of
probabilistic affine forms was introduced in the original work [30], which computes a sound over-
and underapproximation of the probability distribution. However, neither the implementation
details nor any public tool are available for this approach. We have reimplemented the analysis
presented in [30]. Our experiments show that this analysis scales better than the symbolic
inference approach. For example, the WPP of the running example in Figure 3.3 was computed
in 0.63 seconds.

However, this method suffers from high overapproximations. As a result, the WPPs computed
for benchmark programs become trivial and not practically useful. For instance, in the case
of our running example, the computed WPP is 1.0, which does not provide any meaningful
information in practice.

Extending Probabilistic Analysis for Computing Wrong Path Probability The reason why
the above approaches do not work well is that they compute general probability distributions,
but in our case, we are interested in a specific probability value – the probability of the result
being inside the relatively small critical interval. However, it is not immediately obvious which
inputs do lead the program execution to compute the result inside the critical interval, as most
of the input space does not come close to this interval. Ideally, we could perform a backward
reachability analysis starting from the critical interval to obtain only the relevant input domain.
Unfortunately, computing such a sound input domain is nontrivial for multivariate programs.

We combine probabilistic static analysis with interval subdivision, a standard technique used
in static analyses to reduce overapproximations. While it can improve the probability bounds by
itself, performing probabilistic analysis for all subdomains can be too expensive to be useful
in practice. To improve scalability, we further use a nonlinear decision procedure in a forward
manner to check the reachability of the input subdomains and altogether remove parts of them
that definitely cannot reach the critical interval. This process narrows down the input domain for
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the probabilistic analysis and thus improves scalability. For our running example in Figure 3.3,
our method computes a wrong path probability of 0.07060 in 155 seconds.

In summary, we obtain a technique that can compute fairly tight probability bounds (judging
from the few examples where PSI computes a result), and which is nonetheless scalable enough
to handle programs which appear in embedded systems in practice and for which guaranteed
results are of importance. In the following section, we present our technique in detail.

3.2 Probabilistic Static Analysis

To accurately propagate the uncertainties of the inputs, we opt to use probabilistic affine
arithmetic that maintains the dependencies between variables in the computation. The detailed
description of probabilistic affine forms and the arithmetic is presented in the background
section of this thesis (see Section 2.3.2). However, since no existing tool was available for this
approach, we took the initiative to re-implement it from scratch.

Our re-implementation involved making several design decisions to ensure the analysis was
useful in practice. We adapted the probabilistic affine forms for our purpose and incorporated
several crucial design decisions. In this section, we first describe our adaptations and the key
design decisions we made. Later, we present our extension, which involves performing interval
subdivisions and reachability checks to enhance the analysis further. These adaptations and
extensions are essential to achieve an efficient and scalable approach for computing the wrong
path probability (WPP).

3.2.1 Our Adaption of Probabilistic Affine Forms

In the original presentation [30] of the probabilistic affine form (PAA), a variable x is equipped
with noise symbols (d) that captures the probability distributions along with (linear) dependency
information in terms of Dempster-Shafer Intervals (DSIs) with support [−1, 1]. More specifically,
it tracks two types of noise terms: one representing independent ones and one with an undefined
dependency. We show the original representation in Equation 2.11.

However, in our work presented in this chapter, we have chosen not to make a distinction
between two noise symbols. Instead, we keep a set of indices for each noise symbol, indicating
the potential dependencies on other noise terms, and use only one noise symbol (dη) for the
entire computation:

x̂ = x0 +
k

∑
i=1

xidηi

Here, k represents the total number of noise terms. Depending on whether a dηi has a
dependency on the current running sum, the addition operation is considered either dependent
or independent.

Independent arithmetic is straightforward; however, for dependent arithmetic, we need to
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solve a linear programming (LP) problem similar to the original work. The details of these
arithmetic operations are discussed in Section 2.3.2.

3.2.2 Design Decisions for the Implementation

In order to use probabilistic AA to propagate input distributions, the input distributions need to
be first transformed into Dempster Shafer Intervals (DSIs). We provide convenient methods to
discretize the distributions. Our implementation focuses explicitly on the uniform and normal
distributions; however, it should be straightforward to extend it to other distributions. The
overall accuracy of the computed distributions clearly depends on the amount of discretization:
a finer discretization into more focal elements increases the accuracy of the computed probability
distributions, but it also naturally increases the analysis time.

Furthermore, the results depend on several factors, including the algorithm used to reduce the
number of focal elements of the Dempster-Shafer Intervals (DSIs), the translation of probabilistic
AA back into a DSI, the choice of LP solver, and the soundness of internal computations. In this
section, we will describe each of these factors in detail.

Reduction Algorithm With each arithmetic operation, the number of DSI focal elements grows
exponentially and can soon become a performance bottleneck. We thus need to keep the length
of the DSIs bounded. We present a reduction method that, after each arithmetic operation,
checks the length of the DSI. If the length is larger than a user-specified threshold, it combines
focal elements while retaining as much information as possible. The idea of this combination is
to repeatedly merge two focal elements, ei = ⟨[ai, bi], wi⟩ and ej = ⟨[aj, bj], wj⟩, producing one
focal element with a wider interval and larger weight:

eij = ⟨[min(ai, aj), max(bi, bj)], wi + wj⟩

The decision of whether or not two focal elements should be merged depends on their weights
and interval widths. Furthermore, our algorithm only merges two focal elements when their
intervals overlap in order to reduce the loss of accuracy. We show the reduction method in
Algorithm 1.

The algorithm takes as input the DSI d and a threshold T that bounds the length of d. At first,
it merges two overlapping focal elements when the weight of the second is less than a small
value of 1e-5 (line 2 - 4). When this does not reduce the number of focal elements sufficiently, i.e.,
less than the threshold T (line 5), we merge all focal elements whose widths or weights are less
than one standard deviation from the average (lines 6-10 and 12-15). Additionally, this merging
is only applied when the standard deviation is sufficiently large (1e-3 for the interval widths
and 1e-4 for the weights). Without this check, should all focal elements have identical width
(resp. weight), they would all be merged into a single focal element. It may be noted that all
these numerical thresholds are determined empirically and could be updated easily based on
the user’s choice of the DSI length. If the number of focal elements in the DSI is still more than T,
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Algorithm 1 Reduction algorithm
1: procedure reduce(DSI d, threshold T)
2: for ei : (xi, wi)← d do
3: if wi < 1e− 5 && overlaps(xi, xi−1) then
4: merge(ei, ei−1) ▷ merging low weights
5: if length(d) > T then
6: avg = compute_avg_width(d), sd= compute_std_dev_width(d)
7: if sd > 1e− 3 then ▷ variation in widths
8: for ei : (xi, wi)← d do
9: if width(xi) < (avg− sd) && overlaps(xi, xi−1) then

10: merge(ei, ei−1)
11: avg = compute_avg_weight(d), sd = compute_std_dev_weight(d)
12: if sd > 1e− 4 then ▷ variation in weights
13: for ei : (xi, wi)← d do
14: if wi < (avg− sd) && overlaps(xi, xi−1) then
15: merge(ei, ei−1)
16: if length(d) > T then
17: reduce_alternate_overlapping(d)
18: return d

we merge every two overlapping focal elements, irrespective of weight and interval width (lines
16-17). This algorithm in 1 is repeatedly applied until the size of the DSI is sufficiently reduced.

Converting AA to DSI After performing all arithmetic operations, the distribution of the result
is represented as a probabilistic affine form. In order to compute the probability of the value
of the result being inside the critical interval, the affine form needs to be converted to a DSI
representation(a set of intervals and weights). This conversion requires the affine terms to be
summed up using the dependency information collected by the affine form. For this purpose,
we implement a greedy strategy to maximize independent arithmetic operations and reduce
costlier dependent operations as much as possible. Our algorithm first partitions the affine terms
into sets where each set contains mutually independent terms. These terms are added using
independent addition. The resulting mutually dependent partial sums are finally added (in any
order) using the dependent addition.

Floating-point Arithmetic To ensure the soundness of the probabilistic analysis, we implement
our prototype using rationals, i.e., infinite-precision integers. Thus, the prototype does not
suffer from internal roundoff errors; however, it naturally increases the running time of the
analysis. For operations that cannot be computed in rationals, e.g., square root, we use the
MPFR arbitrary-precision arithmetic library [74] and ensure that the result is rounded correctly
to ensure overapproximated sound bounds.

To solve the maximization and minimization problems of the linear programs for the
dependent arithmetic, we utilize an external off-the-shelf solver GLPK [7]. GLPK is implemented
with floating-point arithmetic internally and is generally efficient and precise. However, we
cannot guarantee the results – it does occasionally generate solutions with extraneous focal
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Algorithm 2 Interval subdivision with reachability check
1: procedure compute_wpp(expr e, env E, dist d, divLim L, discretLim X, criticalIntvl cI)
2: numDiv = pow(L, 1/len(E)) ▷ distributing L
3: subDom = cartesian_subdiv(E, numDiv, d)
4: ρ = 0 ▷ total WPP
5: for (dom, ρdom)← subDom do
6: if cheack_reachable(e, dom, cI) then
7: outDSI = prob_analysis(e, dom, X)
8: ρloc = intersect(cI, outDSI)
9: else

10: ρloc = 0 ▷ critical interval not reachable
11: ρ = ρ + ρdom × ρloc ▷ add local WPP
12: return ρ

elements with weights on the order of double floating-point roundoff errors. An entirely
satisfactory solution here would be to use a guaranteed LP solver, such as Lurupa [115] that uses
interval arithmetic internally and guarantees the results even in the presence of roundoff errors
or LPex [65], an exact solver, that certifies the result. However, the effects of such solvers on
analysis performance are uncertain. Given that the probabilities we compute are many orders of
magnitude larger than double-precision floating-point roundoff errors, we have kept GLPK as
our solver.

3.2.3 Our Extension: Interval Subdivision + Reachability Checks

Using only probabilistic AA, we can compute a sound overapproximation of the wrong path
probability (WPP). However, our experimental results show that for many of our benchmarks,
the WPP computed is 1 or close to 1 (see the column marked ‘A’ in Table 3.3 in the ‘Experimental
Evaluation’ section). Because of such high overapproximations, probabilistic static analysis
alone is not enough for our purpose. To reduce the overapproximation, we propose to subdivide
the ‘outer’ input interval into multiple subdomains (the user can specify the total number of
subdivisions) and to perform a reachability check on each subdomain before it is passed to the
probabilistic static analysis. The overall method is shown in Algorithm 2.

The algorithm takes as input an arithmetic expression e, an environment E mapping variables
to input intervals, the assumed distribution of inputs d, a limit on outer subdivisions L, a limit
on the discretization of input distributions X and the critical interval cI.

The algorithm first distributes the outer subdivision limit L among the input variables (line
2) and then subdivides each input variable’s interval numDiv times such that we obtain overall
at most L subdomains (line 3).

For each subdomain dom, the algorithm then checks whether the critical interval is reachable
(line 6). This check is performed by encoding reachability as an SMT query and discharged
using Z3 [63]. We set a timeout of 1s; if the SMT solver times out, we assume the critical interval
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is reachable, thus ensuring soundness. If the critical interval is potentially reachable, we perform
probabilistic analysis, obtaining a sound overapproximation of the output distribution as a
DSI (line 7). From this, we obtain the wrong path probability ρloc for the subdomain dom by
summing up the probabilities of the outDSI’s focal elements, which intersect with the critical
interval (line 8). If the SMT solver determines that the critical interval is not reachable, from
dom, the wrong path probability of the particular sbdomain is ρloc = 0.

Finally, the algorithm returns the overall WPP as the weighted sum ρ = ∑ ρdom,i× ρloc,i, where
the weights ρdom depend on the input distribution. Our implementation currently supports
normal and uniform distributions; e.g. for the latter, all ρdom’s are the same.

It may be noted that interval subdivisions with reachability checks together without prob-
abilistic analysis can also be used to compute the wrong path probability by adding the
probabilities of the input subdomains from which the critical interval is reachable. This method
can be efficient and precise in some cases; however, our experiments in Table 3.3 show that
the proposed combination of probabilistic analysis and subdivisions with reachability checks
overall computes the tightest wrong path probability for the benchmarks.

Running Example Recall our example from Figure 3.3 which takes three inputs x1, x2, x3
uniformly distributed in [−15.0, 15.0]. Choosing L = 8000, our algorithm subdivides each input
range into 20 pieces, each with equal weight. For this example, the reachability checks determine
that for 87% of the subdomains, the critical interval is unreachable, and thus, for these, the
probability analysis is skipped. For the remaining 13%, probabilistic analysis computes the total
WPP as 0.07060. The WPP using only subdivision and reachability checks and no probabilistic
analysis would be 0.07992.

3.3 Experimental Evaluation

In this section, we extensively evaluate our proposed probabilistic analysis to compute the wrong
path probabilities of a set of benchmarks we present next. Here, we also show how the existing
exact symbolic inference techniques can be used to compute the wrong path probabilities and
the effectiveness of the approach for our purpose.

3.3.1 Benchmarks

As no standard benchmark set exists, we retrofit a number of existing benchmarks from the area
of finite-precision roundoff error estimation [161, 53]. Each of these benchmarks comes with
lower and upper bounds on input variables. These benchmarks cover various scenarios from
diverse domains:

• Polynomial approximations of math functions: We collected 3 benchmarks that compute
polynomial approximations of mathematical functions that are often costly to compute
precisely. The benchmark sine implements seventh-order and sineOrder3 implements
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third-order approximation of Taylor’s series of the sine function, and the benchmark sqroot

computes an approximation of a variable’s square root.

• Physics expressions: The benchmark doppler computes the change in wave frequency
due to the Doppler effect, and turbine implements 3 non-linear equations that model the
stress on a turbine rotor. We divided these 3 equations into 3 benchmarks – turbine1,
turbine2, and turbine3.

• Embedded controllers: traincar, taken from [14], models a simple pulling train car with
the objective of quickly reducing the possible oscillations between the locomotive and
the car. We have unrolled the linear control loop up to 4 iterations and generated 4
benchmarks – traincar1, traincar2, traincar3, and traincar4. Additionally, we have the
rigidBody benchmarks from the same source, computing the angular momentum for a
rigid spacecraft with two controls.

• Embedded image processing applications: bsplines are used in embedded image applica-
tions which we adapted from [124]. There are 4 basic bspline functions that we considered
into 4 benchmarks – bspline0, bspline1, bspline2, and bspline3.

Table 3.2 shows the number of arithmetic operations and variables of each benchmark. We
consider all input variables to be either uniformly or all normally distributed within the input
ranges. For variable x, which is uniformly distributed on [a, b], we declare it as x := uniform(a, b).
For a normally distributed variable, we choose one standard deviation from the mean and
declare it as the following program:

tmp := gauss(a, b);

observe(-1.0 <= tmp && tmp <= 1.0);

x := mid + radius * tmp;

with mid = (a + b)/2 and radius = |(a− b)/2|.
For each benchmark, we select two thresholds: low, where we expect the wrong path

probability to be low, and high, where we expect the probability to be high. We generate these
thresholds by simulation. From a plot of the recorded results, we choose one threshold from the
more and one from the less likely result region.

3.3.2 Using Symbolic Inference

As mentioned in Section 3.1.2, propagating probability distributions is possible using exact
symbolic inference tools. In this section, we attempt to compute the wrong path probabilities of
our benchmarks that are expressed as probabilistic programs (as shown in Figure 3.3) using a
state-of-the-art probabilistic programming inference tool.

Several approaches to probabilistic inference exist. As exact probabilistic inference is a hard
problem [46], most algorithms compute numerical approximations using sampling [136, 35, 143].



38 chapter 3. discrete choice with numerical uncertainties

Such methods, however, do not provide accuracy guarantees. The recently developed PSI
(Probabilistic Symbolic Inference) solver [82] performs symbolic inference and generates a
compact representation of the exact final distribution. This distribution is, in general, still quite
complex and large, but it can be numerically evaluated using Mathematica [102], for which we
can specify an output precision.

Experimental Setup We empirically evaluate to which extent exact probabilistic inference is
suitable for computing wrong path probabilities. For these experiments, we consider roundoff
errors as the only uncertainty, i.e., we assume that the inputs are otherwise exact. For this, we
combine three off-the-shelf tools.

• Roundoff error analysis with Daisy: In the first step, we use the open-source tool
Daisy [55] to compute a sound absolute roundoff error bound on the numerical part of each
benchmark. Daisy performs forward data-flow analysis and supports both floating-point
and fixed-point arithmetic and can also be used to propagate input errors.

We used Daisy and computed roundoff errors for 16-bit fixed-point arithmetic as well
as 32-bit (single precision) floating-point arithmetic and recorded the roundoff error
as a constant in the probabilistic program. The computation of roundoff errors for all
benchmarks for one precision took under 30 seconds.

• Symbolic probabilistic inference with PSI: In the second step, we run PSI on the
probabilistic programs, each of the same forms as in Figure 3.3. We choose all inputs
to be either uniformly or normally distributed on the same support for which we have
computed roundoff errors. All inputs are independent. PSI computes the output and the
probability distribution of the assertion failing; we record the latter for our experiment.
We set a timeout of 10 minutes (we did not observe different results with longer timeouts).

• Numerical evaluation with Mathematica: PSI returns the exact simplified expression
of the wrong path probability in the input format of Mathematica. This expression can
then be numerically evaluated using the N[...] command. We set the output precision to
be five decimal digits (Mathematica adjusts the internal precision automatically) and a
timeout of 10 minutes for Mathematica to compute the wrong path probabilities.

We used PSI downloaded on 22 March 2018, Mathematica version 10.4.0.0 and Daisy’s version
from 6 December 2017. We ran all experiments on a Debian desktop with 3.3 GHz and 32 GB
RAM.

Results and Discussion Table 3.1 shows the wrong path probabilities for benchmarks where
both PSI and Mathematica finished within the time limit. For doppler, rigidBody, turbine, and
traincar, either PSI or Mathematica timed out so that we do not show them in the table.

Table 3.2 shows the real-time (measured by the bash time command) taken by PSI to compute
the exact probability distribution. We also measured the time taken by Mathematica (using the
AbsoluteTiming command); however, we observed that either Mathematica reported a time
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benchmarks
16-bit fixed-point 32-bit floating-point

normal uniform normal uniform

high low high low high low high low

sine 8.12e-4 4.55e-4 9.55e-4 2.98e-4 6.47e-7 3.63e-7 7.61e-7 2.38e-7

sineOrder3 2.14e-3 5.24e-4 2.47e-3 4.49e-4 1.64e-6 4.03e-7 1.90e-6 3.44e-7

sqroot 3.07e-2 9.59e-4 2.79e-2 1.10e-3 9.62e-6 3.03e-7 8.74e-6 3.49e-7

bspline0 1.73e-2 6.05e-4 1.82e-2 7.23e-4 1.00e-5 3.53e-7 1.05e-5 4.21e-7

bspline1 3.26e-3 1.48e-3 3.46e-3 1.59e-3 2.39e-6 1.08e-6 2.54e-6 1.16e-6

bspline2 2.78e-3 1.26e-3 2.95e-3 1.32e-3 2.09e-6 9.46e-7 2.22e-6 9.95e-7

bspline3 2.78e-3 3.58e-4 2.30e-3 4.27e-4 1.70e-6 2.32e-7 1.49e-6 2.77e-7

Table 3.1: Wrong path probability computed by PSI (not shown benchmarks did not complete
within 20 min)

below 1 ms or it timed out after 10 minutes. For this reason, we only report PSI’s running times.
The benchmarks for which PSI successfully computes results (as reported in Table 3.2) but do
not appear in Table 3.1, Mathematica timed out.

Where PSI and Mathematica are able to compute wrong path probabilities, they indeed
compute a smaller probability for lower thresholds than for higher ones. Similarly, for smaller
uncertainties, i.e., 32-bit floating-point roundoff errors, the probabilities are also significantly
smaller, as expected. While the values for uniform and normal input distributions are not
directly comparable, we have included them as different distributions pose different difficulties
for inference. This can be seen in Table 3.2 where PSI can compute a result for rigidBody1 for
normal and for turbine2 for uniform input distributions only.

In conclusion, our results confirm that the symbolic inference-based approach is capable of
computing precise WPP, but it does not scale for the majority of benchmark programs.

3.3.3 Using Probabilistic AA + Our Extension

In this section, we extensively evaluate our proposed analysis presented in Algorithm 2. Our
algorithm is conceptually simple but very effective for computing tight wrong path probabilities.
Nonetheless, it has several parameters which need to be specified. In particular, it performs
two types of subdivisions, one for discretizing the DSIs and another for subdividing the input
intervals. To determine suitable parameters, we conduct a systematic empirical exploration,
presenting a subset of the results in this section and comparing them in terms of running time.

We identify one setting that allows for a fully automated analysis and performs comparatively
better among other settings, both in terms of wrong path probability computation and running
time. This setting is used for our next comparison of low and high thresholds. Subsequently, we
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benchmarks #ops #vars normal distribution (s) uniform distribution (s)

doppler 8 3 * *

sine 18 1 1.301 0.688

sineOrder3 5 1 0.437 0.523

sqroot 14 1 0.565 0.767

bspline0 6 1 0.729 0.354

bspline1 8 1 0.690 0.303

bspline2 10 1 0.729 0.356

bspline3 4 1 0.716 0.994

rigidBody1 7 3 121.510 -

rigidBody2 14 3 - -

turbine1 14 3 - -

turbine2 10 3 - 106.348

turbine3 14 3 - -

traincar1 6 3 15.553 15.330

traincar2 10 5 353.004 352.947

traincar3 14 7 355.616 353.52

traincar4 18 9 - -

Table 3.2: Average analysis time of PSI (- : timeout, * : segfault)

employ the same setting for further evaluations on additional benchmarks in Section 3.3.4. All
these experiments are conducted using the same Debian system as used for PSI.

3.3.3.1 Evaluation of Parameter Settings

We define the following different subdivision strategies that we denote with the letters A-E.

• A, probabilistic analysis only: In this setting, we do not subdivide the outer interval, i.e.,
L = 0. The probabilistic analysis discretizes each initial variable distribution into DSIs
with 25 focal elements. We have observed empirically that discretizing the DSIs further
extensively increases the running time of the analysis without quite improving the results.
Hence, we used 25 as the initial discretization of the DSI; however, the number of focal
elements can increase up to 100 during computation.

• B, non-probabilistic analysis: Here, we only subdivide the outer interval and do not apply
any probabilistic analysis. If the critical interval is reachable, as determined using the SMT
solver, we assign 1 to the local probability and 0 otherwise.

• C, outer subdivision and probabilistic analysis with coarse discretization: In this setting,
we apply both discretization and outer subdivision but choose the focus on the latter, i.e.,
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settings A B C D E

# DSI subdiv 25 0 2 4 4

# outer subdiv 0 32000 16000 8000 8000 (deriv.)

doppler 1.00e+0 4.68e-2 3.06e-2 2.17e-2 2.16e-2

sine 3.24e-1 3.13e-5 5.76e-5 6.45e-5 6.45e-5

sineOrder3 3.58e-1 6.25e-5 1.17e-4 1.23e-4 1.23e-4

sqroot 1.00e+0 3.13e-5 6.25e-5 9.38e-5 9.38e-5

bspline0 1.00e+0 3.13e-5 5.47e-5 6.06e-5 6.06e-5

bspline1 9.60e-1 6.25e-5 3.13e-5 1.95e-5 1.95e-5

bspline2 9.16e-1 6.25e-5 1.23e-4 1.72e-4 1.72e-4

bspline3 1.00e+0 3.13e-5 3.13e-5 7.81e-6 7.81e-6

rigidBody1 1.00e+0 7.99e-2 7.11e-2 7.06e-2 7.05e-2

rigidBody2 1.00e+0 1.02e-1 1.05e-1 9.23e-2 1.07e-1

turbine1 1.00e+0 5.75e-2 5.77e-2 4.82e-2 5.25e-2

turbine2 1.00e+0 5.28e-2 5.44e-2 4.64e-2 4.91e-2

turbine3 1.00e+0 6.97e-2 6.39e-2 5.39e-2 5.73e-2

traincar1 9.83e-2 4.81e-2 2.98e-2 1.86e-2 2.47e-2

traincar2 1.14e-1 2.96e-1 1.74e-1 9.17e-2 1.23e-1

traincar3 1.33e-1 5.37e-1 3.66e-1 1.97e-1 1.33e-1

traincar4 2.04e-1 8.55e-1 7.13e-1 4.20e-1 2.83e-1

Table 3.3: Wrong path probabilities computed with different settings for 32-bit floating-point
roundoff errors as uncertainty, uniform distributions, and a high threshold as the critical interval

we choose a large L = 16000 and a small number of focal elements (2 per variable DSI) for
the initial discretization.

• D, outer subdivision and probabilistic analysis with finer discretization: As in setting C,
we use both kinds of subdivisions but use a smaller L = 8000, and 4 initial focal elements
(per variable DSI), overall maintaining 32000 divisions.

• E, derivative guided outer subdivision: For settings B - D, we subdivide each input
variable equally (outer subdivision column in the table). However, some variables may
influence the result more or less. Based on this idea, we used the magnitude of the
derivative with respect to each input variable to decide which variable’s interval should
be subdivided more: variables with larger derivatives are subdivided more, keeping the
entire subdivisions under 32000.

Table 3.3 presents the wrong path probabilities computed, and Table 3.4 compares the running
time averaged over 3 runs for the different strategies. The row ‘# DSI subdiv’ gives the number of
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settings A B C D E

#DSI subdiv 25 0 2 4 4

#outer subdiv 0 32000 16000 8000 8000 (deriv.)

doppler 14.350 187.080 136.750 184.340 188.300

sine 3.540 279.760 201.480 75.50 74.630

sineOrder3 0.270 195.140 90.900 49.380 49.200

sqroot 79.510 212.920 107.280 54.350 53.880

bspline0 0.760 207.970 104.77 51.088 51.086

bspline1 3.950 195.920 98.780 49.160 49.80

bspline2 3.020 196.290 98.620 49.600 49.520

bspline3 0.760 189.350 94.085 47.510 47.470

rigidBody1 0.650 189.260 116.032 154.540 147.830

rigidBody2 1.260 234.950 144.070 138.850 241.038

turbine1 65.240 250.590 323.70 375.170 424.580

turbine2 17.810 223.600 215.740 258.420 250.760

turbine3 49.150 238.160 356.710 447.970 523.220

traincar1 0.210 184.950 99.150 58.290 59.780

traincar2 1.240 112.280 97.430 301.020 384.860

traincar3 1.230 109.720 57.820 186.310 460.530

traincar4 1.320 132.270 21.320 73.900 650.280

Table 3.4: Analysis times in seconds (averaged over 3 runs) of different settings

focal elements of each input variable distribution, and ‘# outer subdivision’ the maximum value
of L in 2. To ensure a fair comparison, we choose the number of outer and DSI subdivisions such
that the total number of divisions is at most 32000. We also kept a limit on the number of DSIs
during computation, which is 100, to keep the analysis scalable.

The results in Table 3.3 confirm that probabilistic analysis alone (setting A) is not precise to
compute wrong path probability except for the linear traincar controllers, where this setting
does provide the best results. The reason behind this high overapproximation is that the
intervals of the focal elements tend to be wide, and thus, too many intersect with the critical
interval. In general, outer subdivision alone (setting B) provides much better results than setting
A, i.e., tighter wrong path probabilities. We observe that this setting performs the best for
univariate functions (sine, sineOrder3, sqroot, bspline0, bspline2) to provide reasonable wrong
path probabilities. The combination of outer and coarse DSI subdivision (setting C) provides
overall decent results but not the best. The combination with finer DSI subdivision (setting
D) provides the best results for 8 out of 17 benchmarks. Somewhat surprisingly, derivative
guided outer subdivision (setting E) provides a (small) benefit only for 3 benchmarks (doppler,
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benchmarks high threshold low threshold benchmarks high threshold low threshold

doppler 2.16e-2 4.93e-3 rigidBody2 9.23e-2 6.10e-2

sine 6.45e-5 6.25e-5 turbine1 4.82e-2 4.47e-3

sineOrder3 1.23e-4 6.25e-5 turbine2 4.64e-2 3.35e-3

sqroot 9.38e-5 7.62e-5 turbine3 5.39e-2 2.08e-3

bspline0 6.05e-5 6.64e-5 traincar1 1.86e-2 2.61e-3

bspline1 1.95e-5 6.05e-5 traincar2 9.17e-2 3.51e-3

bspline2 1.72e-4 5.66e-5 traincar3 1.97e-1 7.29e-4

bspline3 7.81e-6 6.64e-5 traincar4 4.20e-1 7.19e-3

rigidBody1 7.06e-2 6.28e-3

Table 3.5: Wrong path probabilities for high and low thresholds (setting D)

rigidBody1, traincar3) compared to setting D. We observe that a combination of outer and DSI
subdivisions provides the best results, with setting D being better overall.

We note that for those benchmarks, where PSI computes a probability using exact inference, the
results with our static analysis method are quite close, confirming that the overapproximations
due to static analysis are acceptable.

The results in Table 3.4 show that the imprecise probabilistic analysis (setting A) is the least
expensive for all benchmarks and the non-probabilistic analysis (setting B) the most expensive
for 15 out of 17 benchmarks in terms of running time. The combinations of these two (settings C,
D, E) provide a tradeoff between the precision of the computed wrong path and the running time
of the analysis. Setting D and E are pretty close, D being faster for benchmarks with more input
variables (traincars with 3, 5, 7, and 9 inputs). Hence, we utilize setting D for our experiments
in the following sections.

It may be noted that we keep the running times below 10 minutes (except for traincar4

where the analysis using setting E takes 650.28 seconds which is a bit more than 10 minutes and
50 seconds), which is comparable to the 10-minute timeout for PSI.

Low vs High Thresholds To evaluate the precision of the probabilistic analysis with setting
D, we use two thresholds: one high and one low, as we did with PSI ( Table 3.1) and compare
the results in Table 3.5. With the high threshold, we expect to compute a larger wrong path
probability than what we compute with the low threshold. This is indeed the case for 14 out
of 17 benchmarks. However, we observe that our static analysis method is not able to detect
the low probability threshold as consistently as PSI. This is because our method computes an
overapproximation rather than computing the distributions precisely, as in PSI, to keep the
analysis scalable even for complex distributions.
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3.3.4 Further Evaluation

In this section, we perform additional experiments with setting D, the overall most successful
setting found in terms of WPP and analysis time presented in Table 3.3 and Table 3.4. We
compare the results for different-sized uncertainties for uniform and normal distributions, as
well as independent and dependent inputs. Along with a subset of the previous benchmarks
presented in Section 3.3.1, we choose several additional benchmarks for these evaluations where
studying discrete choices is particularly relevant, which we describe next in detail.

• filter: We unroll 3 and 4 times a linear 2nd order numerical filter taken from [11], that
appears frequently in embedded software to obtain benchmarks filter3 and filter4 with
15 and 25 arithmetic operations and 3 and 4 input variables, respectively.

• solveCubic: This benchmark, obtained from GNU Scientific Library, has been used in
previous work [179] in the context of test case generation for floating-point programs with
branches. The benchmark has 14 operations and 3 variables.

• classID: We trained a Linear Support Vector Classifier using the Python sklearn library
on the Iris standard data set, which comes with sklearn, and extracted source code from
the classifier using sklearn-porter [8]. For our benchmark, we have inlined the weights
computed, and the three versions of this benchmark (ID0, ID1, ID2) correspond to the
three decision variables, respectively classes, in the data set. They each have 15 arithmetic
operations and 4 input variables.

• neuron: This is a simplified version of the DNN, which is supposed to have learned the
‘AND’ operator [145]. This neural network has one hidden layer of size 2 and six weights
defining them. We consider here a one-input version, keeping one of the inputs constant.
This benchmark uses the exponential function and has 22 arithmetic operations.

Different Sized Uncertainties In this first experiment, we compare the wrong path probabilities
computed using our method for different-sized critical intervals: obtained by computing roundoff
errors for 16-bit fixed-point and 32-bit floating-point arithmetic without input uncertainties, as
well as assuming an input uncertainty of 0.001 (and 32-bit floating-points). All errors have been
computed using the Daisy tool. The four missing entries in the fixed-point arithmetic column
are due to overflows in the 16-bit implementation, and for the neuron benchmarks, an input
error of 0.001 leads to a potential division by zero.

Table 3.6 shows the results. We observe that while the wrong path probabilities are all
relatively small, our method is not able to distinguish in a notable way, except for the bspline

benchmark, between different-sized critical intervals. This is, as before, with the low and
high thresholds, a fundamental limitation of our abstraction-based method that computes an
overapproximation of the wrong path probabilities, which we show here for completeness.
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benchmarks
no uncertainty input uncertainty.: 0.001

16-bit fixed 32-bit float 32-bit float

bspline2 1.38e-3 5.66e-5 6.08e-3

rigidBody1 6.35e-3 6.28e-3 6.32e-3

rigidBody2 - 5.05e-2 5.22e-2

traincar1 2.72e-3 2.61e-3 2.66e-3

traincar2 3.53e-3 3.51e-3 3.53e-3

traincar3 - 7.29e-4 7.36e-4

traincar4 - 7.19e-3 7.19e-3

filter3 3.51e-3 3.23e-3 3.31e-3

filter 6.81e-4 6.72e-4 6.74e-4

solveCubic 3.32e-5 3.13e-5 3.32e-5

classID0 5.79e-2 5.70e-2 5.76e-2

classID1 5.79e-2 5.70e-2 5.74e-2

classID2 9.50e-2 9.37e-2 9.44e-2

neuron - 1.38e-1 -

Table 3.6: Wrong path probabilities for different critical intervals

Uniform vs Gaussian Inputs In this section, we use our analysis to compare how the wrong
path probability changes with the input distributions. For this, we run our analysis with all
inputs uniformly and normally distributed but keeping the thresholds, i.e., critical intervals,
constant.

Table 3.7 shows the results. As expected, the wrong path probabilities can differ substantially.
This result confirms the importance of taking input distributions into account while doing the
analysis. We also show the running times, as we have observed differences – with normal
distribution, the running time is generally much higher than the uniform distribution. We
suspect that these differences are due to the reduction method, which will have different effects
for different input distributions.

Dependent Inputs Until now, we have always assumed that all inputs were independent and
dependencies were only introduced by arithmetic operations. In this experiment, we look at the
wrong path probability computed with all inputs being either independent or dependent (with
unknown dependency).

Table 3.8 shows the results. We observe that, in general, the wrong path probabilities
computed are greater for the dependent case. This is expected as we have to consider all possible
dependencies. The difference is, however, not too large, and the results are still useful.

Curiously, we also observe that the running times of our method are smaller for the dependent
case, even though, in this case, we are calling the LP solver for every arithmetic operation. But
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benchmarks
wrong path probability time (in seconds)

uniform normal uniform normal

bspline2 5.66e-5 6.43e-5 53.30 59.86

rigidBody1 6.28e-3 4.39e-3 69.20 153.81

rigidBody2 5.05e-2 5.10e-2 195.46 595.88

traincar1 2.61e-3 1.69e-3 52.02 51.89

traincar2 3.51e-3 2.10e-3 68.07 74.67

traincar3 7.29e-4 4.22e-4 25.01 35.00

traincar4 7.19e-3 5.49e-3 20.70 42.13

filter3 3.23e-3 1.97e-3 54.54 54.46

filter4 6.72e-4 3.17e-4 47.14 48.94

solveCubic 3.13e-5 1.30e-5 58.00 147.38

classID0 5.70e-2 6.37e-2 331.13 609.52

classID1 5.70e-2 6.49e-2 293.04 532.12

classID2 9.37e-2 0.100 383.73 661.24

neuron 0.138 0.160 16.34 16.31

Table 3.7: Uniformly vs. normally distributed inputs

this is also the reason for the shorter running times; the GLPK solver we use is implemented
in floating-point arithmetic, whose results we translate to rationals at the interface to our
implementation. Calling the solver often effectively does not allow our rationals to grow too
large, thus keeping the running time low.

3.3.5 Future Improvements

While our prototype already computes reasonable wrong path probabilities, the performance
of our implementation could be improved in several ways. First, the probabilistic analysis
of each subdomain is trivially parallelizable, but we currently compute it sequentially as the
GLPK solver is not threadsafe (but has a convenient interface for a prototype implementation).
Secondly, a smarter subdivision similar to branch-and-bound methods could reduce the number
of subdomains checked by SMT. Next, instead of DSIs, we could employ a more sophisticated
method using the concentration of measure inequalities [31]. This method does not necessarily
provide tighter probability bounds but is more efficient in general (but also more complex to
implement and the implementation from [31] is not available). Finally, our implementation using
rationals is costly and can be improved either by using high-precision floating-point arithmetic
internally—at the expense of some guarantees—or by using interval arithmetic with floating-
point bounds and outwards rounding—at the expense of the complexity of implementation.
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benchmarks
wrong path probability time (in seconds)

independent dependent independent dependent

bspline2 5.66e-5 6.25e-5 53.30 54.27

rigidBody1 6.28e-3 1.37e-2 69.20 53.53

rigidBody2 5.05e-2 7.68e-2 195.46 77.91

traincar1 2.61e-3 5.22e-3 52.02 52.32

traincar2 3.51e-3 9.48e-3 68.07 56.88

traincar3 7.29e-4 7.20e-3 25.01 19.08

traincar4 7.19e-3 8.89e-2 20.70 9.32

filter3 3.23e-3 3.78e-3 54.54 54.20

filter4 6.72e-4 5.33e-4 47.14 47.36

solveCubic 3.13e-5 2.50e-4 58.00 56.43

classID0 5.70e-2 0.119 331.13 60.38

classID1 5.70e-2 8.66e-2 293.04 57.92

classID2 9.37e-2 0.158 383.73 62.57

neuron 0.138 0.138 16.34 6.82

Table 3.8: Independent vs. dependent inputs (with uniform input distributions)

3.4 Conclusion

In this chapter, we have considered several guaranteed analyses for bounding the effects of
numerical uncertainties on discrete decisions in terms of the probability of making the wrong
decision. Our results show that existing exact and static analysis approaches possess limitations
in terms of both scalability and accuracy.

However, we have successfully demonstrated that these limitations can be effectively over-
come with our novel approach, which combines a non-probabilistic reachability analysis with
probabilistic static analysis. Our method efficiently computes wrong path probabilities, which
are tight enough to be useful in practice for small but interesting embedded programs.





4Sound Probabilistic Roundoff Error Analysis

So far, roundoff error analysis for finite-precision programs performs worst-case analysis, i.e.,
considers that the most significant error gets introduced at every arithmetic operation.
However, such an analysis can be overly pessimistic as the largest error may not occur

in practice for every operation. Furthermore, many applications are designed to be robust to
some noise and tolerate errors — as long as they remain within some acceptable bounds and
appear infrequently. For instance, in control systems, feedback can compensate for larger errors
in subsequent iterations. To address this differentiated behavior, it is crucial to compute the
probability of certain error bounds.

Such an analysis of errors is even more relevant in light of the advancements in approximate
computing [174], which introduces approximate architectures and storage. These hardware
components are more resource-efficient but often exhibit probabilistic error behaviors, where
operations have a certain probability of returning a larger error. In such cases, it is crucial
to consider these probabilistic error specifications to compute precise error bounds and their
probabilities, which is beyond the capabilities of state-of-the-art roundoff analyzers.

Several techniques exist [31, 156, 82, 143, 35, 136, 153], including ours presented in chapter 3,
that track or compute probability distributions; however, they do not consider and support prob-
abilistic reasoning about errors due to finite-precision arithmetic or approximate computing, or
they only compute coarse-grained error estimates instead of error probability distributions [137].

In this chapter, we introduce the first sound probabilistic error analysis for floating-point
numerical programs. This analysis computes a (discretized) probability distribution of roundoff
errors at the program output that soundly over-approximates all possible error distributions.

To compute the error distribution, our analysis extends the abstract domain of probabilistic
affine arithmetic discussed in Section 3.2 for roundoff errors. This probabilistic error analysis is
combined with a probabilistic version of interval subdivision, enabling us to compute a precise
probability distribution of errors efficiently.

Our analysis focuses on tracking two types of errors. Firstly, we consider standard floating-
point arithmetic, where inputs are distributed according to a user-given distribution. In this
setting, we consider the worst-case roundoff error according to IEEE754 standard [99] for each
operation. However, as roundoff errors depend on the magnitude of variables, which are
specified by probability distributions, we effectively obtain a probability distribution of errors.

Secondly, we extend our analysis to handle probabilistic error specifications inspired by
approximate hardware. In this case, we not only consider probabilistic input ranges but also
incorporate errors with probabilistic specifications, i.e., with a certain probability, the error for
each operation can be larger than usual [137, 152].

49
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We observe that the computed (discretized) distributions of errors are hard to interpret and
use by a programmer. Hence, inspired by the error tolerance property of programs, we propose
a new error metric. This metric defines that with a (high) probability p, the error does not exceed
a refined threshold Cp, which is smaller than the overall worst-case error.

Recall our controller example from the introduction ( Figure 1.1) where a result is computed
as res = -x*y - 2*y*z - x - z. In 32-bit floating-point precision, the worst-case error in res is
1.73e-4. Our analysis computes that with probability p = 0.85, the error is at most Cp = 1.54e-4.

We implemented the probabilistic error analysis in a prototype tool called Probabilistic
Analyzer (PrAn), which extends the existing numerical analyzer Daisy [55]. We evaluated PrAn
on various benchmarks from the literature, and the results demonstrate its effectiveness in
soundly computing refined error bounds, considering a predefined probability.

In our experiments, we assumed that the programs could tolerate large errors with a low
probability of 0.15. We aimed to compute bounds on the errors that occur with a higher
probability p of 0.85. Taking this probability into account, along with the standard floating-point
error specification, PrAn computes sound error bounds that are, on average, 17% and 16.2%
and up to up to 48.9% and 45.1% smaller than worst-case errors for gaussian and uniform input
distributions, respectively.

In conjunction with p=0.85, we also considered a probabilistic error specification. Under
this assumption, individual operations have a probability of 0.1 for committing errors of larger
magnitude (2× standard floating-point error). With this probabilistic scenario and an occurrence
probability of 0.85, PrAn computes sound error bounds that are, on average, 30.6% smaller than
worst-case errors, with improvements of up to 73.1%.

Contributions In summary, in this work, we present:

a) a general static analysis that computes probabilistic distributions of finite-precision errors,

b) an instantiation of this analysis for exact and approximate error specifications,

c) a procedure to extract useful, human-readable refined error specifications, and

d) an open source tool ‘PrAn’ implemented as an extension of Daisy, which is available on
Zenodo (see https://doi.org/10.5281/zenodo.8042198).

The work presented in this chapter is based on the publication titled ‘Sound Probabilistic
Numerical Error Analysis’ [167] co-authored with Milos Prokop and Eva Darulova. Milos Prokop
contributed to the generation of visual graphs and explored alternative error representations
under my supervision, while Eva Darulova provided valuable feedback on the writing and
editing of the paper.

4.1 Overview

Before presenting our proposed probabilistic error analysis in detail, we provide an overview of
the problem and our proposed solution with an example.

https://doi.org/10.5281/zenodo.8042198
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// x: [-2, 2]

x := gaussian(-2.0, 2.0)

res := 0.954929658551372 * x - 0.12900613773279798 * (x * x * x)

Figure 4.1: Running example

     finite precision  
 program with 

probabilistic inputs

probabilistic  
roundoff error 

analysis

decision 
threshold (T)

error metric 
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Figure 4.2: Overview of our approach

Problem Description The program presented in Figure 4.1 computes a third-order approx-
imation of the sine function. The user specifies the distribution of input variables: here ‘x’
is distributed in [-2, 2] following a gaussian distribution. Suppose the user has further set
the threshold probability to p = 0.85, which states that the program can tolerate large errors
occurring with a probability of 0.15.

We can use state-of-the-art error analyzers to compute the worst-case error in res. For
example, we used Daisy [55] and computed the worst-case error in single precision as 4.62e-7.
However, this worst-case roundoff error may not always occur. Hence, we want to compute a
sound refined bound Cp on the error that occurs with a probability of at least 0.85.

Our Proposed Technique Figure 4.2 shows the overview of our proposed technique. We
propose to probabilistically track roundoff and other approximation errors and provide less
pessimistic error bounds than a worst-case analysis. Our analysis takes into account the
distributions of input variables, tracks errors probabilistically throughout the program for a
user-provided uniform floating-point precision, and computes a sound over-approximation of
the error distribution at the output. Finally, we show how to extract an error metric from the
output distribution. The user of our approach provides a threshold probability p, and we can
extract a tighter refined error bound Cp than worst-case error, that holds with probability p.

With our probabilistic error analysis tool PrAn, we can compute a refined error Cp of 2.67e-7
that occurs with at least the threshold probability of 0.85. This refined error is almost 43%
smaller than the worst-case error of 4.67e-7 1.

Our work focuses on straight-line arithmetic expressions as shown in Figure 4.1. However, it
is possible to extend our analysis to reason about loops via loop unrolling and loop invariants
as they are done in previous techniques presented in [52] and [53, 88, 140] respectively, and
conditionals by a path-by-path analysis as in [140, 53]. All these techniques reduce these complex

1These refined bounds improve resource efficiency compared to worst-case errors for programs that can tolerate
large but infrequent errors.
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Algorithm 3 Tracking probabilistic roundoff errors
1: procedure compute_prob_error(expr f , env E, dist d, divLimit L, precision prec, prob p)
2: discrtDist = discretize(E, d, L)
3: subDom = subdivide(E, d, L)
4: errDist = ϕ
5: for (domi, ρi)← subDom do
6: absErri = eval_prob_roundoff( f , domi, prec) ▷ see Algorithm 2
7: normErri = normalize_prob(absErri, ρi)
8: errDist = merge(errDist, normErri)
9: (err, prob) = extract_error_metric(errDist, p)

10: return (err, prob) ▷ returns the refined error with probability

program structures into straight-line code, thus facilitating error analysis.
Moreover, our analysis primarily computes absolute roundoff errors. Some techniques

compute relative errors directly [108] if the output range does not include zero, which, however,
often happens in practice. Our method can also compute relative errors from the absolute ones
only when the final range does not include zero.

4.2 Tracking Probabilistic Errors

Algorithm 3 shows the high-level overview of our analysis. Our algorithm takes as input the
following parameters:

1. a program given as an arithmetic expression f ,

2. ranges of the input variables E which define the environment of the program,

3. the probability distribution d of the input variables,

4. a limit L on the number of total subdivisions,

5. a uniform floating-point precision prec, and

6. a threshold probability p.

Our implementation of the analysis currently considers the same probability distribution for
all input variables as well as uniform floating-point precision. However, it can be straightfor-
wardly extended to consider different distributions and mixed precision.

Algorithm 3 first discretizes each input range distribution into subdomains (line 2). For each
subdomain, it runs the probabilistic error analysis for the specified floating-point precision prec
(line 6). The computed error distribution is then normalized by multiplying the probability of
the subdomain occurring (line 7). Then, the new error is merged with the error distribution
errDist (line 8) that accumulates error distributions for each subdomain to generate the complete
error distribution of the output error. Finally, from errDist, we extract the error metric (line 9)
and its actual probability, which may be larger than the requested p, and return it (line 9).
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In Section 4.2.1, we first describe a simplified version of Algorithm 3, which performs
probabilistic interval subdivision but computes errors for each subdomain with standard
worst-case roundoff error analysis. While interval subdivision is standardly used to decrease
overapproximations, to the best of our knowledge, it has not been used previously to compute
probabilistic error bounds. Then, we extend this analysis with our novel probabilistic error
analysis in Section 4.2.2, and combine it with probabilistic interval subdivision in Section 4.2.3.
Finally, we show how our probabilistic error analysis can be further extended to account for
approximate error specifications standard in today’s approximate hardware in Section 4.2.4.

4.2.1 Probabilistic Interval Subdivision

First, we consider a relatively straightforward extension of the worst-case error analysis,
which considers the distributions of input variables. For now, let us assume the function
eval_prob_roundoff in Algorithm 3 (line 6) computes a worst-case error instead of a proba-
bility distribution, and focus on the interval subdivision where the intervals are subdivided
probabilistically (line 3).

Our algorithm first subdivides each input interval equally and, for multivariate functions,
takes their Cartesian product to generate subdomains. The probability of each subdomain
is computed by taking the product of the probabilities of the corresponding subintervals. In
this way, the algorithm generates a set of tuples (domi, ρi) where a value is in subdomain domi

with probability ρi. This interval subdivision is similar to the subdivision implemented for our
probabilistic analysis in Section 3.2.3.

Now, we can run the standard worst-case data-flow error analysis on each subdomain using
state-of-the-art tools like Daisy to compute an error bound absErri. To make the worst-case
analysis precise, we utilize affine arithmetic for the errors and interval arithmetic for the ranges,
as it tends to have fewer over-approximations for non-linear expressions. Hence, the algorithm
computes for each subdomain i an error tuple (absErri, ρi), i.e. with probability ρi, the worst-case
error is absErri. From these error tuples collected by errDist, our analysis extracts the error
metric according to the use provided threshold probability p.

Extracting the Error Metric We want to extract an error Cp, smaller than the worst-case error,
that holds with threshold probability p provided by the user. The function extract_error_metric

in Algorithm 3 repeatedly removes tuples with the most significant error and subtracts their
corresponding probability while the total probability of the remaining tuples remains at least p.
Finally, we return the refined error and its probability, which is at least p but may be higher.

Running Example Recall our example in Figure 4.1, which has a worst-case error of 4.62e-7
in single precision. If we use L = 100 and p = 0.85, our prototype tool PrAn probabilistically
subdivides the input domain into 100 subdomains and computes a reduced error bound of
2.97e-7 that holds with at least probability 0.85 (the worst-case error remains unchanged). If the
program is immune to big errors with probability 0.15, the relevant error bound is thus reduced
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Algorithm 4 Probabilistic range and roundoff error analysis
1: procedure eval_prob_roundoff(ASTnode node, subdom dom, precision prec)
2: if node = lhs op rhs then ▷ binary operation
3: realRange = eval_range(lhs, rhs, op, dom)
4: errLhs = eval_prob_roundoff(lhs, realRange, prec)
5: errRhs = eval_prob_roundoff(rhs, realRange, prec)
6: propErr = propagate(errLhs, errRhs, op)
7: newRange = to_DSI(realRange + propErr)
8: else ▷ node is a variable
9: newRange = to_DSI(dom)

10: for (x, w)← newRange do
11: roundo f f = max_roundoff(x, prec)
12: errDist.append(roundo f f , w)
13: return add_noise(propErr, normalize(errDist))

substantially by 35%.

4.2.2 Probabilistic Roundoff Error Analysis

The error computed using only probabilistic interval subdivision is pessimistic as the actual
error computation still computes worst-case errors. To compute a tighter distribution of errors at
the output, we propose to track roundoff errors probabilistically throughout the program. To
the best of our knowledge, this is the first sound probabilistic analysis of roundoff errors. For
now, we consider an exact error specification, which means that the roundoff error introduced at
each individual arithmetic operation is still the worst-case error, following the IEEE754 standard
specification. However, we still obtain a distribution of errors, as the roundoff errors depend on
the ranges of the values of the variables. As not all values of a variable are equally likely due to
the distribution of the input variables, the errors are also not equally likely. In this section, we
present the probabilistic error analysis only. In the following section, we combine this analysis
with a probabilistic interval subdivision to compute tighter error distribution at the output.

The function eval_prob_roundoff shown in Algorithm 4 extends probabilistic AA presented
in Section 2.3.2 to propagate error distributions through the program by performing a forward
data-flow analysis recursively over the abstract syntax tree (AST) of an input program. For each
AST node (node), an input subdomain (dom), and a precision (prec), the algorithm computes
the distribution of accumulated roundoff errors. This error distribution is a sound over-
approximation, i.e., the actual distribution lies within the computed upper and lower bounds.
The soundness of our technique follows from the soundness of the underlying probabilistic AA.

For each binary arithmetic operation op, our analysis first computes the real-valued range
(line 3) using probabilistic AA as it is done in Section 3.2. However, computing the accumulated
errors is more involved and constitutes our extension over probabilistic AA and one of our main
contributions of this work. To compute these accumulated errors, the algorithm first computes



4.2 tracking probabilistic errors 55

range

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y
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Figure 4.4: Error Distribution

the errors of its operands (lines 4-5) and, using these errors of the operands, computes the
propagated error propErr in line 6. Our probabilistic error propagation extends rules from
standard AA to probabilistic AA. However, for probabilistic AA, the operations themselves are
more expensive. Depending on whether errors from one operand are correlated with the other
one, the analysis solves linear programming problems. The propagated errors are then added to
the real-valued range distribution to obtain the finite-precision range distribution (line 7), from
which we can compute roundoff errors. Before doing so, we convert the probabilistic affine form
to a DSI representation (to_DSI), which is more amenable for roundoff error computation.

Each focal element of the finite-precision DSI for the range assigns a probability w to an
interval x. Hence, we can compute the roundoff error for each focal element following the
floating-point abstraction presented in Section 2.1.1, and assign the weight w to that error (lines
10-12). That is, our procedure computes roundoff errors separately for each focal element, and
appends them to generate a new error DSI (line 12). The newly committed error DSI is then
normalized to [-1, 1] and added as a new noise term to the probabilistic affine form of the
propagated errors (line 13). Thus, the error distribution is propagated throughout the program,
and finally, we obtain a probabilistic affine form of the error at the output.

Extracting the Error Metric To extract the error metric from the probabilistic affine form of the
error, we first transform it into a DSI structure, which we can then use to remove the large errors
with low probabilities. We first sort the focal elements and then remove the elements with the
largest error magnitude from the error DSI, similarly, to Section 4.2.1, until the total weight of
the resultant DSI sums up to the threshold p. Our tool, PrAn, returns the maximum absolute
value of the remaining focal elements as the refined error. This extraction effectively tries to find
as small an error bound as possible, which will fall within the probability p.

Running Example We utilized probabilistic analysis on our sine example from Figure 4.1.
We first discretize the input distribution into a DSI structure with 100 focal elements as shown
in Figure 4.3. From this, our tool PrAn obtains the probability distribution of the error as a
DSI structure shown in Figure 4.4. As the figure shows, the intervals of the DSI are extremely
wide due to high over-approximation incurred and they almost fully overlap with each other.
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Figure 4.5: Alternative Error Metric with Vertical Subdivision

As a result, we could not refine the worst-case error using probabilistic analysis only. We also
observe that the error computed using this analysis is even larger than our simple extension of
the worst-case analysis with probabilistic interval subdivision.

Alternative Error Metric Another choice of error representation could be to compute the
probability of the most significant errors occurring. To extract this information, the error
distribution is conceptually subdivided vertically first, as shown in Figure 4.5. In this way, we can
compute the probability of the large error, which will be between the outermost extension and
the following subdivision. We then need to sum all the weights intersecting with the specified
interval. We observed this alternative error specification to be less useful in practice due to
broad overlaps between the focal elements. We thus focus the remainder of this work on the first
type of error metric.

4.2.3 Probabilistic Error Analysis with Interval Subdivision

To reduce the over-approximation incurred with probabilistic analysis only, we propose to
combine the error analysis with our probabilistic interval subdivision from Section 4.2.1. We
thus generate an error distribution for each subdomain and combine the distributions to obtain
the final error distribution. The over-approximation is less because every subdomain is much
smaller than the whole input environment. Thus, it improves the accuracy overall.

It may be noted that though we compute the error DSI for each subdomain as a step function,
due to the merging at the end, the overall distribution cannot be a step function anymore. However,
the actual error distribution is still inside the resultant distribution, thus guaranteeing soundness.

For the full analysis with probabilistic error analysis and subdivision, we choose 2 initial DSI
discretizations and 50 outer interval subdivisions (to keep a fair comparison with 100 overall
initial subdivisions). Note that during the computation, the number of DSI discretizations grows
exponentially, i.e., does not remain at 2. However, we limit the total number of DSI discretization
during the computation to 100, which we observed to be a good compromise between accuracy
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Figure 4.6: Error Distribution with full Probabilistic Analysis

and efficiency.

Running Example Figure 4.6 shows the resulting error distribution using the full probabilistic
analysis. As mentioned before, this distribution is not a step function due to merging. However,
the distribution is much tighter than the distribution obtained in Figure 4.4 with probabilistic
error analysis only. With our full analysis, we are able to compute a refined error of 2.67e-7 (with
a threshold probability of 0.85). This refined error is almost 43% smaller than the worst-case
error of 4.67e-7 and 10% smaller than the error of 2.97e-7 computed using only probabilistic
interval subdivision.

4.2.4 Probabilistic Analysis with Approximate Error Specification

Until now, we have considered programs with exact error specification that considers only
one error at every computation. However, some programs might exploit approximations to
enable better performance in terms of energy and resource utilization. Approximate computing
is an emerging design paradigm that does precisely that. Approximate hardware may, for
instance, introduce large but infrequent errors in a computation [137, 152], where precision is not
paramount in order to utilize resources more efficiently. Such approximate error specifications
are themselves probabilistic: with a certain probability, the error produced by an operation is
larger than the usual worst-case error bound. For such specifications, the worst-case analysis
considers the most significant error for all computations, even if it occurs only infrequently, thus
computing highly pessimistic error bounds.

With our proposed probabilistic error analysis, we can incorporate such an approximate
error specification when the larger errors are bounded with a known upper bound. We extend
the function max_roundoff in Algorithm 4 to compute a sound probabilistic error bound with
approximate specifications. Previously, we computed one error for each focal element of the
range DSI structure. Now, we compute multiple errors depending on the error specification,
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resulting in appending multiple focal elements to the error distribution DSI, and propagate them
through computation.

For example, for a specification where a larger error can occur with a certain probability,
we compute two errors and thus obtain two focal elements at line 12 in Algorithm 4: one focal
element that keeps track of the big error (with usually a small probability ρ), and one focal
element which tracks the regular error (with probability 1− ρ).

Running Example We explain the method in detail with our running sine example from
Figure 4.1. Let us consider an approximate error specification for the example where an
error of size twice the usual machine epsilon (2 ×ϵm) occurs with probability ρ = 0.1 and the
regular roundoff error (ϵm) appears with probability 0.9. The state-of-the-art worst-case analysis
computes 7.34e-7 as the worst-case error. As expected, in this probabilistic setting, the absolute
worst-case error is much higher than the worst-case error of 4.62e-7 with exact error specification,
where at each step, only an error of ϵm appears.

We parameterize our prototype tool PrAn with 2 DSI discretizations and 50 outer interval
subdivisions for this experiment to make a fair comparison with other cases with exact error
specifications. With probabilistic error specification and a threshold probability of 0.85, PrAn
computes refined bounds of 5.02e-07 and 3.86e-7 using only probabilistic interval subdivisions
and our complete probabilistic error analysis with probabilistic subdivisions, respectively. As
these results show, only probabilistic subdivisions cannot take advantage of the approximate
error specification, whereas the complete analysis does consider this property of the program
and refines the error substantially.

As expected, all these bounds with approximate error specifications are higher than the cases
with exact error specifications, where the refined bounds were 2.97e-7 and 2.67e-7 with only
probabilistic analysis and the complete probabilistic analysis, respectively.

4.2.5 PrAn: Probabilistic Roundoff Error Analyzer

We have implemented our proposed probabilistic error analysis technique(s) in the prototype tool
PrAn, which is implemented on top of the state-of-the-art tool Daisy. Given an input distribution,
PrAn fully automatically computes the error distribution, graphically plots the distribution, and
finally extracts the error metric from it. The analyses in PrAn are implemented using sound
intervals with arbitrary-precision outer bounds (with outwards rounding) using the GNU MPFR
library [75], thus ensuring soundness and efficiency simultaneously. We use GLPK [7] as our
simplex solver as it is done in our previous implementation of the probabilistic AA. The solver
uses floating-point arithmetic internally and may thus introduce roundoff errors into the analysis.
An entirely satisfactory solution would use a guaranteed LP-solver as Lurupa [115] or LPex [65].
However, given that the probabilities we compute are many orders of magnitude larger than
double-precision floating-point roundoff errors and the performance of the guaranteed solvers
is uncertain, we used GLPK and left this exploration for future work.
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4.3 Experimental Evaluation

In this section, we rigorously evaluate our analysis implemented in PrAn to generate a refined
bound, considering that the system can tolerate a large error with a certain probability. Before
going into the experimental settings and evaluation, we first describe the set of benchmarks
that we have used for this work. We have used all the benchmarks from our previous work
presented in Section 3.3.1 and Section 3.3.4, which were collected from the domains of scientific
computing (sine, sineOrder3, sqroot, solveCubic), embedded systems (bspline, traincar,

rigidBody, filter) and machine learning (classID and neuron). We have also added a few new
benchmarks, details of which are presented next.

Additional Benchmarks The benchmark filter is already introduced before in Section 3.3.1.
In this work, in addition to filter3 and filter4, we use another version (filter2) with 6
arithmetic operations by unrolling the control loop twice.

We have further extracted a polynomial support vector classifier trained on the Iris standard
data set from the Python sklearn library using sklearn-porter [8]. For our benchmark poly, we
have inlined the weights computed, and the three versions of this benchmark (ID0, ID1, ID2)
correspond to the three decision variables, respectively classes, in the data set. Each of these
benchmarks has 23 arithmetic operations.

4.3.1 Experimental Setup

For experiments, we have considered an error metric that returns a refined error given a
probability threshold of 0.85. We use 32-bit single precision as the target precision. All
experiments were performed on a Debian desktop computer with a 3.3 GHz i5 processor and
16GB RAM.

We have evaluated PrAn with two kinds of subdivisions, with two types of input distributions,
and with two types of error specifications: we consider DSI discretization as well as input interval
subdivision, uniform and gaussian distributions of inputs, including the DSI discretization and
interval subdivision), and exact and probabilistic error specifications. We define eight different
settings using the letters ‘A-H’ to evaluate PrAn.

• A, B: probabilistic interval subdivision only These settings use only probabilistic interval
subdivisions from Section 4.2.1. Here, we limit the total number of outer interval
subdivisions to 100. Both these settings also use an exact error distribution, i.e., only
machine epsilon (ϵm) occurs for every arithmetic operation. The difference is that setting A
considers gaussian, whereas B considers uniform distributions for program inputs.

• C, D: entire probabilistic analysis The complete probabilistic error analysis with proba-
bilistic interval subdivision from Section 4.2.3 is used for both these settings. For a fair
comparison, we limit the total number of input subdomains from DSI and input interval
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subdivision to 100, i.e., when probabilistic AA is used, each input DSI is subdivided into
2, and the input interval subdivisions are determined such that the overall number of
subdomains remains below 100. Note that during the computation, the number of DSI
subdivisions is limited by 100 (not 2). Settings C and D consider gaussian and uniform
distributions, respectively, for the input variables of the program and the exact error
specification as it is in settings A and B.

• E, F, G: entire probabilistic analysis with approximate error specifications These three
settings perform the entire probabilistic analysis with 100 total subdivisions (DSI and inter-
val as in settings C and D) considering approximate error specifications (as in Section 4.2.4).
Settings E and F assume a large error with magnitude 2× ϵm occurs with probability 0.1,
and the smaller error ϵm occurs with probability 0.9. Gaussian and uniform distributions
were used in setting E and F, respectively. Setting G uses the same parameters as it is in
setting E, except it uses a different approximate error specification. It considers a much
larger error of magnitude 4× ϵm with probability 0.1.

• H: probabilistic interval subdivision only with approximate error specification Setting H
considers an approximate error specification as in setting G but performs only probabilistic
interval subdivision from Section 4.2.1. We increase the input interval subdomains to
200, thus providing an additional edge to the probabilistic interval subdivision. With this
setting, we evaluate whether probabilistic AA is helpful for approximate error specifications
or simply using more interval subdivisions, which are relatively cheap, is sufficient.

It may be noted that we consider independent inputs for all our experiments. Additionally, we
utilize uniform and gaussian input distributions for our experiments as PrAn automatically
generates discretized DSI for these distributions. However, our approach can handle any
discretized input distribution provided as a DSI, as well as inputs with (unknown) correlations.
Our choice of input distribution is arbitrary, as the ‘right’ distribution is application-specific.

4.3.2 Results and Discussion

Table 4.1 and Table 4.2 show the absolute worst-case and refined error values with settings
A, C, and E considering gaussian inputs and settings B, D, and F considering uniform inputs,
respectively. The ‘# DSI subdiv’ gives the number of focal elements of each input distribution,
and the row ‘# outer subdiv’ shows the maximum number of interval subdomains in both tables.

As the results show, the worst-case errors computed by settings A, B (probabilistic interval
subdivision only) and settings C, D (entire probabilistic analysis) remain the same for many
cases (7 and 11 benchmarks with gaussian and uniform distributions). For others, the worst-case
error computed by settings A, B and C, D slightly differ because the subdivisions produce
slightly different subdomains. The best results in terms of computing tighter error bounds are
highlighted in the table. In setting E and F, the error specifications are approximated. Hence, we
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expect to get larger worst-case errors which is indeed the case as shown in the tables.

Our results show that settings A, B, C, and D were able to refine the error bounds considering
an exact error specification in almost all cases except those marked with ‘*’. The traincar4

benchmark has 9 input variables, which means that with our total limit of subdivisions, each
input is divided too few times to refine the error. For traincar3, PrAn could refine the worst-case
error only with setting C and D, i.e., using our full probabilistic error analysis. Using approximate
error specifications (settings E and F), PrAn was always able to refine the errors.

For some benchmarks, the full probabilistic error analysis outperforms probabilistic interval
subdivision, but for others, it is the other way around. When probabilistic error analysis (settings
C and D) is better, it tends to be more significantly better than vice-versa.

In general, which analysis is better is application specific: this depends on the over-
approximations committed, which in turn depend on the operations and ranges of an application.
A user should consider both variants and use the best result in a portfolio-like approach. Note,
however, that for approximate error specifications, a probabilistic error analysis is necessary in
order to adequately capture the probabilistic error specification.

We also show the error reduction between the refined and the corresponding worst-case
errors in Table 4.3 considering gaussian distributions of inputs. Additionally, we keep setting D
with uniform distribution here to compare the full performance of PrAn.

The reductions for the exact error specifications are, on average, 20.9%, 17%, and 16.2% with
settings A, C, and D, respectively. The reduction with gaussian inputs in setting C is, in most
cases, higher than for uniform inputs. We also see that the reductions are application-specific
and, for many benchmarks, more substantial than the averages. In some cases, our probabilistic
analysis, even with exact specifications, allows us to report refined errors with nearly half the
magnitude as the worst-case (up to 49.8%), with the guaranteed probability of at least 0.85.

Our probabilistic analysis achieves even higher reductions with the approximate error
specification (settings E and G) with on average 24.9% and 30.6% smaller refined errors than
worst-case, respectively. Even if we double the number of total subdivisions using setting H,
the probabilistic interval subdivision can only reduce the error on average by 25.4%, compared
to 30.6% using our full probabilistic analysis. While for a few cases, setting H outperforms
setting G (because of overapproximations in the probabilistic analysis), overall, our complete
probabilistic analysis successfully captures the fact that large errors only occur infrequently.

Finally, we also compare the running times of the analyses in Table 4.4 with settings A,
C, and E (averaged over 3 runs). As expected, the full probabilistic error analysis (settings C
and E) takes more time than the analysis with probabilistic subdivisions only (setting A) for
all benchmarks. Furthermore, setting E with approximate error specification is costlier than
the analysis with the exact specifications. This result is also expected, as we have more focal
elements for errors with setting E than with setting C. However, we believe that these analysis
times are nonetheless acceptable for a static analysis which is run only once.
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worst-case error refined error

A C E A C E

#DSI subdiv 0 2 2 0 2 2

#outer subdiv 100 50 50 100 50 50

sine 2.40e-7 2.41e-7 4.76e-7 1.56e-7 1.68e-7 2.66e-7

sineOrder3 4.62e-7 4.62e-7 7.34e-7 2.97e-7 2.67e-7 3.86e-7

sqroot 1.50e-4 1.54e-4 2.42e-4 8.38e-5 8.89e-5 1.31e-4

bspline0 8.69e-8 8.69e-8 1.44e-7 4.36e-8 4.44e-8 5.51e-8

bspline1 2.09e-7 2.10e-7 3.86e-7 1.96e-7 1.97e-7 2.67e-7

bspline2 2.16e-7 2.12e-7 4.21e-7 1.87e-7 1.89e-7 2.91e-7

bspline3 5.71e-8 5.71e-8 8.44e-8 3.33e-8 3.39e-8 3.72e-8

rigidBody1 1.58e-4 1.73e-4 3.01e-4 9.99e-5 1.57e-4 1.98e-4

rigidBody2 1.94e-2 9.70e-3 1.38e-2 1.06e-2 8.50e-3 1.05e-2

traincar1 1.99e-3 2.00e-3 2.94e-3 1.84e-3 1.67e-3 2.52e-3

traincar2 1.37e-3 1.37e-3 2.06e-3 1.32e-3 1.19e-3 1.83e-3

traincar3 2.29e-2 2.29e-2 3.85e-2 2.29e-2* 2.26e-2 3.46e-2

traincar4 2.30e-1 2.30e-1 4.13e-1 2.30e-1* 2.30e-1* 3.75e-1

filter2 1.04e-6 1.04e-6 1.72e-6 8.64e-7 7.57e-7 1.13e-6

filter3 2.99e-6 2.87e-6 4.99e-6 2.62e-6 2.58e-6 4.52e-6

filter4 6.51e-6 5.20e-6 9.16e-6 6.09e-6 4.96e-6 8.69e-6

solveCubic 1.83e-5 2.02e-5 3.35e-5 1.73e-5 1.90e-5 2.80e-5

classID0 8.77e-6 9.10e-6 1.45e-5 7.95e-6 7.92e-6 1.20e-5

classID1 4.63e-6 4.76e-6 7.70e-6 4.28e-6 4.38e-6 6.70e-6

classID2 7.32e-6 7.60e-6 1.25e-5 6.35e-6 6.55e-6 1.02e-5

polyID0 5.56e-3 5.80e-3 9.29e-3 2.96e-3 5.32e-3 7.94e-3

polyID1 6.81e-4 7.56e-4 1.23e-3 4.51e-4 7.08e-4 1.12e-3

polyID2 5.05e-3 5.40e-3 8.73-3 2.84e-3 5.08e-3 7.55e-3

neuron 3.22e-5 7.02e-5 9.87e-5 3.20e-5 5.25e-05 7.47e-5

Table 4.1: The worst case and refined error in different settings with guassian inputs (* indicates
the worst-case error could not be refined with the setting)
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worst-case error refined error

B D F B D F

#DSI subdiv 0 2 2 0 2 2

#outer subdiv 100 50 50 100 50 50

sine 2.72e-7 2.41e-7 4.76e-07 2.18e-7 1.83e-7 2.66e-7

sineOrder3 4.62e-7 4.62e-7 7.34e-7 3.29e-7 2.84e-7 4.04e-7

sqroot 1.50e-4 1.54e-4 2.42e-4 9.02e-5 9.33e-5 1.39e-4

bspline0 8.69e-8 8.69e-8 1.44e-7 4.60e-8 4.77e-8 5.80e-8

bspline1 2.12e-7 2.10e-7 3.86e-7 2.00e-7 2.00e-7 2.81e-7

bspline2 2.18e-7 2.12e-7 4.21e-7 2.08e-7 1.93e-7 2.93e-7

bspline3 5.71e-8 5.71e-8 8.44e-8 3.50e-8 3.50e-8 3.99e-8

rigidBody1 1.58e-4 1.73e-4 3.01e-4 1.50e-4 1.57e-4 1.98e-4

rigidBody2 1.94e-2 9.70e-3 1.38e-2 1.71e-2 8.55e-3 1.13e-2

traincar1 2.00e-3 2.00e-3 2.94e-3 1.91e-3 1.67e-3 2.48e-3

traincar2 1.37e-3 1.37e-3 2.06e-3 1.32e-3 1.19e-3 1.80e-03

traincar3 2.29e-2 2.29e-2 3.85e-2 2.29e-2* 2.26e-2 3.46e-2

traincar4 2.30e-1 2.30e-1 4.13e-1 2.30e-1* 2.30e-1* 3.75e-1

filter2 1.04e-6 1.04e-6 1.72e-6 9.08e-7 7.74e-7 1.17e-6

filter3 3.07e-6 2.87e-6 4.99e-6 2.96e-6 2.58e-6 4.26e-6

filter4 8.23e-6 5.20e-6 9.16e-6 8.17e-6 4.95e-6 8.69e-6

solveCubic 1.85e-5 2.02e-5 3.35e-5 1.74e-5 1.90e-5 2.80e-5

classID0 9.10e-6 9.10e-6 1.45e-5 8.52e-6 7.79e-6 1.20e-05

classID1 4.76e-6 4.76e-6 7.70e-6 4.66e-6 4.35e-6 6.79e-6

classID2 7.60e-6 7.60e-6 1.25e-5 7.44e-6 6.36e-6 1.01e-05

polyID0 5.80e-3 5.19e-3 9.29e-3 4.17e-3 4.78e-3 7.94e-3

polyID1 7.55e-4 5.71e-4 1.23e-3 7.00e-4 5.04e-4 5.04e-4

polyID2 5.40e-3 5.19e-3 8.38e-3 3.94e-3 4.78e-3 7.04e-3

neuron 6.40e-5 7.02e-5 9.87e-5 3.94e-5 4.86e-5 6.86e-5

Table 4.2: The worst case and refined error in different settings with uniform inputs (* indicates
the worst-case error could not be refined with the setting)
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benchmarks
reduction (%)

A C D E G H

sine 34.9 30.3 24.1 44.1 52.2 39.6

sineOrder3 35.7 42.1 38.5 47.4 52.9 34.0

sqroot 44.3 42.4 39.5 45.6 56.6 45.8

bspline0 49.8 48.9 45.1 61.7 73.1 56.6

bspline1 6.2 6.0 4.7 30.8 40.2 9.7

bspline2 13.5 11.0 9.4 31.0 40.6 17.4

bspline3 41.6 40.7 38.7 56.0 67.0 48.6

rigidBody1 36.9 8.8 8.8 34.2 34.8 38.6

rigidBody2 45.4 12.4 11.8 24.1 13.5 49.2

traincar1 7.5 16.4 16.4 14.4 20.2 7.2

traincar2 3.3 12.6 12.7 11.3 13.6 1.9

traincar3 0.0 1.3 1.3 10.1 11.2 2.2

traincar4 0.0 0.0 0.0 9.2 8.3 0.0

filter2 16.9 27.5 25.9 34.5 13.9 29.7

filter3 12.4 10.0 10.0 9.6 23.0 23.8

filter4 6.5 4.6 4.9 5.1 47.5 10.4

solveCubic 5.8 5.8 5.9 16.2 41.9 9.3

classID0 9.3 13.0 1.5 17.6 18.7 13.6

classID1 7.5 8.0 8.6 12.9 5.3 10.1

classID2 13.3 13.8 16.3 18.3 22.2 14.8

polyID0 46.8 8.2 8.0 14.5 14.6 50.1

polyID1 33.8 6.3 11.7 8.7 10.6 37.3

polyID2 43.9 5.9 8.0 13.6 19.6 49.2

neuron 0.9 25.3 30.8 24.3 41.7 13.9

Table 4.3: Reductions in % in errors w.r.t. the standard worst-case in different settings and
analysis time (averaged over 3 runs) in different settings
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A C E A C E

sine 9.0 361.0 6551.0 traincar4 0.1 22.0 36.0

sineOrder3 5.0 187.0 406.0 filter2 0.9 107.0 182.0

sqroot 1.0 89.0 2036.0 filter3 0.9 259.0 676.0

bspline0 0.4 22.0 722.0 filter4 16.0 654.0 1719.0

bspline1 0.6 42.0 817.0 solveCubic 16.0 191.0 864.0

bspline2 0.8 50.0 966.0 classID0 23.0 219.0 464.0

bspline3 0.4 18.0 80.0 classID1 2.0 236.0 473.0

rigidBody1 0.1 35.0 76.0 classID2 0.1 219.0 421.0

rigidBody2 0.4 74.0 659.0 polyID0 0.5 1972.0 10905.0

traincar1 0.3 75.0 235.0 polyID1 0.8 2006.0 11599.0

traincar2 0.3 389.0 682.0 polyID2 3.0 2309.0 10658.0

traincar3 0.1 12.0 25.0 neuron 0.5 71.0 257.0

Table 4.4: Analysis time in seconds (averaged over 3 runs) in different settings

4.4 Conclusion

This chapter introduces a novel probabilistic analysis method for tracking errors arising from
finite-precision arithmetic in straight-line code. Unlike conventional worst-case error analysis,
our approach focuses on computing the probability distribution of roundoff errors at the output.
Additionally, to better interpret the error distribution, we have proposed an error metric that
identifies a potentially smaller error than the worst-case, occurring with a predefined threshold
probability.

This probabilistic analysis is particularly beneficial for applications that can tolerate larger
errors as long as their probability is bounded. By considering the probabilistic nature of
errors, our refined approach becomes even more valuable, especially in the context of modern
approximate hardware, where probabilistic error specifications are common.





5(Conditional) Verification of Realistic
Floating-Point Programs

In addition to roundoff errors, floating-point arithmetic introduces special values such as
not-a-number (NaN) and infinities [100]. NaNs emerge as results of invalid operations like
division by zero or taking the square root of negative values, while infinity often arises due

to overflows in the floating-point format.
Existing techniques for verifying the absence of infinities, NaNs, and large roundoff errors

(cancellation) in floating-point applications do not scale well for whole floating-point applications.
While static analysis tools can, in theory, verify the absence of floating-point issues, they are
either limited to small programs (essentially individual functions) [60, 161, 53, 140, 132, 55]
or suffer from significant over-approximations and do not track roundoff errors [26, 135, 89].
Dynamic analyses that attempt to show the presence of such issues [77, 22, 38, 182] either lack
scalability or only work with manual intervention. More guided techniques such as symbolic
execution [129] rely on a back-end SMT solver, for which floating-point theories have very limited
scalability.

Therefore, there is a clear need for more scalable techniques capable of handling larger
floating-point programs that can provide an automated, accurate, and preferably sound way of
verifying the absence of cancellation errors, infinities, and NaNs.

We observe that often only a relatively small part of a program performs complex numerical
computations—we call these parts the numerical kernels. Therefore, existing roundoff analyzers
can be applied to these kernels if preconditions that bound the kernel input ranges are provided.

However, manually obtaining such preconditions is challenging since the kernels are usually
nested in loops as functions. Recall our nbody example from Figure 1.4; the numerical_kernel

function identified on line 9 is one of the most computationally intensive functions, but it is
concealed within loops and 2 function calls.

Based on the above observation, we introduce a two-phase analysis that combines different
program analyses to conditionally verify the absence of infinity, NaN, and cancellation errors in
numerical kernels ‘concealed’ in large programs. First, we employ a scalable program analysis to
infer the ranges of kernel inputs in the context of the containing application. The second phase
utilizes state-of-the-art roundoff error analysis that assumes the inferred input ranges to verify
the numerical kernels.

The key insight behind this combination is that the first scalable analysis does not need
to perform sophisticated floating-point reasoning. Instead, it needs to focus on capturing the
ranges of kernel inputs as precisely as possible, which serve as inputs for the subsequent phase
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of numerical analysis.
Automatically inferring precise ranges of kernel inputs is the main challenge in our two-phase

analysis. Our analysis first attempts to generate ranges fully soundly utilizing tools based on
abstract interpretation [135]. If they cannot infer useful (finite) ranges for the kernels, we propose
to employ scalable dynamic analysis techniques to generate large kernel input ranges and capture
as many feasible inputs as possible. This includes an existing directed greybox fuzzer [27] and
a novel guided blackbox fuzzing technique that provides heuristic guidance by directing the
fuzzing towards program inputs that are more likely to produce large ranges for kernel inputs.

After inferring the kernel ranges, the second phase utilizes a slightly adapted version of the
existing static and sound roundoff error analysis tool Daisy [55] to verify the kernels. In case
this analysis produces warnings for special values, we additionally utilize SMT-based bounded
model-checking [119] to check for spurious warnings.

The use of dynamic analysis in the first phase implies that we can only obtain approximate
ranges for the kernel inputs. As a result, the verification of the kernels can only be done
conditionally because the verification is performed under the assumption that the input-domain
specifications precisely describe possible values of the kernel inputs. Despite the conditional
nature of our analysis, it enables us to provide some guarantees for real-world floating-point
programs that are beyond the capabilities of current roundoff error analyzers.

We have implemented our adaptation of blackbox fuzzing and our proposed guided blackbox
fuzzing in a prototype tool, ‘Blossom’. Our evaluation shows that Blossom is capable of handling
programs written in C and C++ (we can also handle Rust programs) with complex programming
structures and over 2K lines of code with 24 kernels and can successfully generate ranges of
kernel inputs.

Through our two-phase analysis framework, we can conditionally prove that no infinity or
NaN occurs for 16 kernels; for 3 of those, the verification is sound. For 14 kernels, we also show
the absence of cancellation errors, which are the leading cause of large roundoff errors.

Contributions To summarize, this work makes the following contributions:

a) a two-phase framework that combines dynamic and static analyses to conditionally verify
the absence of floating-point special values and large roundoff errors in kernels,

b) a novel guided blackbox fuzzing and an adaption of blackbox fuzzing to infer kernel ranges,
implemented in an open-source prototype tool called ‘Blossom’ that is publicly available on
Zenodo (see https://doi.org/10.5281/zenodo.8043359), and

c) an evaluation on a new benchmark set of mid-sized numerical programs.

This chapter is based on our paper titled ‘A Two-Phase Approach for Conditional Floating-Point
Verification’ [168]. The work is done in collaboration with Clothilde Jeangoudoux, Joshua
Sobel, Eva Darulova, and Maria Christakis. Clothilde Jeangoudoux has explored a part of the
state-of-the-art analysis fuzzing techniques. Joshua Sobel has contributed a part of the prototype
implementation under my supervision. Eva Darulova and Maria Christakis have provided
extensive feedback on the writing of the paper.

https://doi.org/10.5281/zenodo.8043359
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Figure 5.1: Overview of our approach

5.1 Overview

We first provide a brief overview of our two-phase approach that strives to extend the reach
of existing floating-point analyses, enabling them to ensure the absence of cancellation errors
and special float values in individual floating-point numerical kernels. We observe that such
numerical computation-heavy kernels are prevalent in real-world applications across various
domains. However, they are often obscured by numerous function calls and other non-numerical
codes that are not handled by state-of-the-art roundoff analyzers.

Our approach, depicted in Figure 5.1, consists of two phases. In the first phase, we consider
a set of numerical kernels, denoted by K, in a program P specified by the user. Then, we infer
bounds on the input variables of these kernels. In the second phase, we utilize these ranges to
(conditionally) verify the kernels, meaning we aim to prove the absence of special values and
large roundoff errors, subject to the inferred bounds.

5.1.1 First Phase: Whole Program Analysis

In the first phase, we employ a program analyzer that automatically infers boundsR on the kernel
inputs by starting from the program inputs constrained by I . These bounds are essential because
the presence of cancellations and special values directly depends on the range of possible values,
and an unbounded input range will typically lead to unbounded roundoff errors and special
values.

To obtain the kernel ranges, it is necessary to analyze the entire program or at least up to
the numerical kernels. However, computing the exact ranges is usually infeasible, so we aim to
approximate them as tightly as possible. We propose using a sound static analysis as a first step,
which computes an over-approximation of the actual ranges. These ranges cover all possible
inputs, including spurious ones. Therefore, we aim to make these ranges as tight (small) as
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possible. If the abstractions necessary for the static analyzer become too large, we propose using
dynamic analysis to compute an unsound approximation of the kernel ranges. In this case, the
ranges should be as wide as possible to capture as many concrete executions as possible.

Sound Static Analysis Our approach for obtaining a sound over-approximation of the kernel
ranges first attempts using abstract interpretation techniques, specifically the industry-strength
analyzer Astrée [135]. Astrée is capable of scaling to large programs with complex code and data
structures and offers various abstract domains. When selecting an abstract domain in Astrée, one
must strike a balance between the amount of over-approximation and the time it takes for the
analysis to run. One of the available domains in Astrée is the interval domain, which abstracts a
set of concrete variable values by their lower and upper bounds: [x, x] := x; |; x ≤ x ≤ x. While
interval arithmetic [139] operations are efficient, intervals cannot capture correlations between
variables, leading to an over-approximation of the actual behavior (e.g., x− x ̸= 0 in interval
arithmetic). More sophisticated domains, such as octagons, are more precise but less efficient. In
our benchmarks, we did not observe significant differences in the results obtained with interval
and octagon domains, probably because our benchmarks include many nonlinear operations.
Therefore, we chose the interval domain as the abstract numerical domain for our purposes.

Dynamic Analysis If Astrée is unable to compute reasonable ranges for kernel inputs, we turn
to dynamic analysis techniques. One such dynamic analysis technique is fuzzing, typically used
to find individual inputs that demonstrate undesirable behavior. We propose a different use
of the fuzzer: to fuzz a program while monitoring the kernel inputs, recording the lower and
upper bounds seen during concrete executions. We instrument each user-specified kernel in
the program with a kernel monitor that tracks the smallest and largest values seen for each
kernel input. We then repeatedly fuzz the instrumented program and report the minimum and
maximum values observed for each kernel input at the end.

The effectiveness of this approach is dependent on the choice of program inputs used
for fuzzing. We propose and experimentally compare the blackbox, guided blackbox, and
directed greybox fuzzing methods for input selection (as detailed in the experimental evaluation
in Section 5.4.3).

Blackbox fuzzing is a simple yet effective technique that randomly selects inputs from the
program ranges I without considering the internal structures of programs. We utilized a
blackbox fuzzer that randomly draws inputs from the program ranges I , runs the programs,
and keeps track of the kernel ranges.

We introduce a variant of blackbox fuzzing, termed guided blackbox fuzzing, which aims
to increase the size of the kernel input ranges. We accomplish this by keeping track of inputs
that have expanded the kernel ranges and using them as a basis for generating new inputs that
are within a small distance of the recorded inputs. This approach is based on the heuristic
assumption that these new inputs will continue to widen the monitored ranges.

While blackbox techniques are straightforward to implement, they do not take into account
the program structure. We thus evaluate an adaptation of directed greybox fuzzing, implemented
in state-of-the-art tool AFLGo [27] that can be directed toward specific program locations while
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exploring as many different paths in the program as possible. We first fuzz the program to
obtain an initial estimate for the kernel input ranges with AFLGo (targeting the kernel). Then,
we employ AFLGo in a refinement loop that iteratively attempts to widen the currently seen
kernel input ranges. We instrument the kernels with conditional statements that check whether
a kernel input is outside of the current kernel range. We use this conditional statement as a
target for AFLGo, effectively directing it to find kernel inputs that are outside of the current
estimate. If AFLGo finds a program input that widens the current kernel input range, we update
it accordingly and iterate the process until a user-defined timeout.

It is important to note that the dynamically computed input ranges may contain more concrete
values than those witnessed by the fuzzer. This is because there may be values between the
lower and upper bounds that are neither observed by the fuzzer nor feasible. If we were to
consider only the values observed at runtime, we could analyze kernels for individual traces,
but this would be prohibitively expensive [22]. However, demonstrating that no special values
or large roundoff errors occur within a kernel for a given input range would prove this for more
executions than could be explored through dynamic testing (since there are usually too many
floating-point values to explore exhaustively).

5.1.2 Second Phase: Numerical Kernel Analysis

In the second phase, we employ a static analyzer to analyze the numerical kernels (K) identified
by the user based on the inferred ranges (R) from the first phase, as illustrated in Figure 5.1.
Our aim is to detect the potential presence of special floating-point values and large roundoff
errors or to prove their absence.

To achieve this, we make use of the state-of-the-art numerical analyzer Daisy [55] that we
adapt for our purpose. By default, Daisy computes an absolute error bound on the kernel output,
which alone is not very informative since it does not consider how this error propagates to the
end of the application (although there exist scalable analyses that potentially can compute this
information, e.g., [133]). However, for many numerical applications, the exact error bound is
not critical as the algorithm itself is approximate. Therefore, we aim to demonstrate that the
roundoff errors are not too large.

To this end, we modify Daisy to issue a warning whenever it detects a possible cancellation
that accentuates existing errors (e.g., when two values with close magnitudes are subtracted [85]).
These cancellation errors are not immediately apparent from the computed result, so an
automated analysis is generally necessary. We present our adaptation of Daisy in Section 5.3.
Warnings about special values can be optionally verified by a SAT/SMT-based model checker
for spurious cases. Additionally, Daisy includes an optimization procedure that can enhance
the accuracy of the kernels by rewriting the arithmetic expressions to produce smaller roundoff
errors.
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5.1.3 Soundness Guarantees

We utilize the extended Daisy analysis to conditionally verify kernels, ensuring that they do not
generate NaN or infinity values and do not result in cancellation errors. When the kernel input
ranges are computed soundly using abstract interpretation, our verification is conditional in that
we only verify the absence of cancellations for the kernels but not for the rest of the program.

When the ranges are computed using dynamic analysis, we, in addition, cannot guarantee
that they cover all possible kernel inputs or even possible inputs in the containing application.
Nonetheless, we verify that cancellation does not occur for all concrete inputs within the ranges.
While NaN or infinity values are easy to detect, cancellation errors generally cannot be detected
by inspecting the computed results. Therefore, our combination is valuable.

5.2 First Phase: Whole Program Analysis

We have considered different program analysis techniques for computing the kernel ranges. We
explain each of these techniques in detail in the following sections.

5.2.1 Abstract Interpretation with Astrée

We begin by configuring our framework for sound verification using Astrée. Since Astrée does
not assume ranges for global variables directly, we add wrapper functions to provide bounds
for these variables. To capture ranges of kernel inputs, we annotate the kernels K with Astrée’s
__ASTREE_log_vars() construct, which logs about the kernel inputs at the entry of the kernels.
Although our instrumentation step is currently manual, it can be automated easily. We then
execute Astrée on the annotated program. If Astrée reports a trivial range of [−∞,+∞] or a
very large range for a kernel, we stop the analysis because roundoff error analyzers do not
produce meaningful results for very large input ranges. However, if the computed range set is
meaningful, we proceed with kernel analysis by using the annotated kernel inputs.

It should be noted that Astrée’s analysis can be parameterized to a great extent using
program-specific knowledge, leading to even more precise results. However, this approach
requires a significant amount of manual effort and a deep understanding of the program’s
intricacies. To avoid this, we parameterize Astrée in a generic manner to minimize the need for
program-specific knowledge. Specifically, we use semantic loop unrolling up to a defined loop
bound to reduce over-approximation in the analysis for all benchmarks.

5.2.2 Fuzzing with Blossom

In cases where Astrée generates highly over-approximated ranges, we turn to fuzzing techniques
to compute kernel ranges. To this end, we have developed a prototype tool named ‘Blossom’ that



5.2 first phase: whole program analysis 73

Algorithm 5 Code instrumentation for range computation
1: procedure execute_and_monitor_kernels(range [Rmin,Rmax], input vi)
2: if vi < Rmin then
3: Rmin = vi ▷ stores min val encountered
4: else if vi > Rmax then
5: Rmax = vi ▷ stores max val encountered
6: return [Rmin,Rmax]

1 double Rmin, Rmax;

2 // more functions ...

3 numerical_kernel(double vi) {

4 compute_range ([Rmin,Rmax], vi)

5 ... }

6 // more functions...

7 double original_program_main(double i){...} //original main function

8 int main() {

9 double i;

10 do {

11 i = generate_random(il, ih); // randomly generates input within bound

12 original_program_main(i)

13 } while (time_spent <= T); // fuzz the inputs the program until time T

14 return [Rmin, Rmax]; //returns min and max val of k

15 }

Figure 5.2: Instrumentation for blackbox fuzzing

incorporates two fuzzing techniques. Blossom is designed as an LLVM pass and can handle
input programs written in C, C++, and Rust, featuring complex programming constructs and
data types. Additionally, Blossom can be used with any programming language that compiles
to LLVM. The tool requires four inputs: the program P , a configuration file that specifies
the ranges of program inputs, the type of fuzzing technique, and a timeout. The LLVM pass
automatically inserts code into P that carries out the specified fuzzing technique and records the
ranges of kernel inputs until the timeout is reached. The following section provides an in-depth
explanation of the fuzzing techniques employed by Blossom.

Blackbox Fuzzing We will start by discussing the blackbox fuzzing method implemented in
Blossom to compute kernel ranges. To instrument the code, Blossom adds an input generator (as
shown in Figure 5.2) that uses the generate_random() function (it implements srand() internally)
to randomly generate values of program inputs from the set of input bounds I (line 12 in
Figure 5.2). Blossom also instruments the execute\_and\_monitor\_kernels() function in line 4 that
is explained in Algorithm 5. It adds conditional statements to check if the current valuation of vi

is smaller than the minimum value Rmin or larger than the maximum value Rmax encountered so
far. If so, it updates Rmin or Rmax accordingly.

Once the code is instrumented, Blossom executes the program and monitors the values of
kernel inputs Ik until a specified timeout T is reached. Finally, it returns a set of ranges for
kernel inputs. It is worth noting that the program shown in Figure 5.2 has one kernel function,
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Algorithm 6 Guided Blackbox Fuzzing
1: procedure guided_blackbox(prog P , ranges I , kernels K, timeout T, mutation m, const c)
2: Q← ϕ, {Rlo} = DBL_MAX, {Rhi} = DBL_MIN

3: {r1, · · · , rn} ← compute_radii(I , c) ▷ generates mutation radii
4: while T ̸= 0 do
5: if Q == ϕ then ▷ queue is empty
6: for i = 1 to m do
7: Q← enqueue(generate_random_input(I)) ▷ generates random inputs
8: else ▷ queue has elements
9: {v1, · · · , vn} ← dequeue(Q)

10: [{Rlo}, {Rhi}]← execute_and_monitor_kernels(K)
11: if kernel_range_updated([{Rlo}, {Rhi}]) then
12: for i = 1 to m-1 do
13: {d1, · · · , dn} ← mutate(v1 ∓ r1, · · · , vn ∓ rn)
14: Q← enqueue({d1, · · · , dn})
15: Q← enqueue(generate_random_input(I) ▷ avoids local max/min
16: return [{Rlo}, {Rhi}] ▷ returns kernel input ranges

numerical_kernel(), with one kernel input vi, which is typically reached after several function
calls in the program (not shown in Figure 5.2).

Guided Blackbox Fuzzing In addition to usual blackbox fuzzing, Blossom implements a
guided blackbox fuzzing technique to generate program inputs that maximize kernel ranges.
The technique, presented in Algorithm 6, is also implemented as an LLVM-pass instrumentation.
It takes as input the program P with an identified set of kernels K, a set of program input ranges
(I), and a timeout (T). The algorithm is also parameterized by the number of mutations m and a
constant c that determines the neighborhood radii for all program inputs from which mutants
(new program inputs) are drawn. The algorithm returns a set of kernel ranges [{Rlo}, {Rhi}]
(line 16) with the goal of computing this interval as wide as possible within the timeout T.

The algorithm maintains a queue of input values, Q, which is used to execute the program
on multiple input values. If the queue is empty, m new random inputs within the specified input
range I are added to the queue (line 6,7). Otherwise, the algorithm dequeues one set of input
values {v1, · · · , vn} from Q (line 9), executes the program P on these input values, and updates
the kernel ranges as in vanilla blackbox fuzzing (line 10).

If the kernel ranges are updated, indicating that the current input value may have led to
kernel inputs being outside of the known range, the algorithm generates m− 1 mutants from the
dequeued input values by randomly selecting inputs from the neighborhood {v1 ∓ r1, · · · , vn ∓
rn} and adds them to the queue (line 12-14). The neighborhood radii {r1, · · · , rn}, computed
once on line 3, determine the distance of a mutant from the original input values and depend on
the width of each input range. Larger input ranges correspond to larger neighborhoods.

To avoid getting stuck in a local maximum or minimum, the algorithm also generates one
random input value for all variables within the specified input range (line 15). This step ensures
that the search process explores a wider range of input values.
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5.2.3 Fuzzing with AFLGo

The blackbox does not take into account the program structure. We thus evaluate an adaptation
of directed greybox fuzzing, which is implemented in the state-of-the-art tool AFLGo [27]. AFLGo
performs directed greybox fuzzing and thus can be directed toward specific program locations
in order to explore as many different paths in the program as possible.

To use AFLGo to generate the kernel ranges, we need to instrument the input program to
only consider numerical values within the specified bounds of program inputs. This is because
AFLGo generates inputs, and we want to discard any inputs outside of the specified bounds that
are not useful for computing kernel ranges. We instrument the kernel functions in the same way
as for blackbox fuzzing as shown in Figure 5.2. We then run AFLGo on this instrumented code
for a specified time bound, directing AFLGo towards exploring as many different paths in the
program as possible. Finally, we return the set of kernel ranges as specified by [Rmin,Rmax].

To guide AFLGo’s exploration toward inputs that reach the numerical kernels, we specify the
beginning of a kernel as a target location. However, traditional AFLGo, which mutates inputs
to reach a specific target location while attempting to achieve as much coverage as possible,
we use AFLGo to explore all possible inputs that reach a kernel in order to maximize the
range of possible kernel inputs. We instrument the kernel functions to monitor all tests that
reach the kernel, not just those that achieve new coverage and are added to the final test suite.
However, without additional guidance, AFLGo may waste program inputs that do not update
the minimum or maximum value of the kernel ranges.

In order to improve the efficiency of the process, we introduce an additional step where we
iteratively attempt to extend the ranges using AFLGo. Initially, we run AFLGo on the program to
obtain an estimate for the kernel ranges [Rmin,Rmax]. We then instrument code at the beginning
of the kernel to check whether the kernel input is smaller thanRmin or larger thanRmax using
a conditional statement, and use these statements as targets for the next step. This effectively
directs AFLGo to find kernel inputs that are outside of the current estimate [Rmin, Rmax]. If
AFLGo finds a valuation vi that is smaller thanRmin or greater thanRmax, we update the ranges
accordingly and repeat this process until a specified time bound T is reached. Finally, we return
the updated kernel ranges [Rmin,Rmax].

5.3 Second Phase: Static Analysis with Daisy

After computing the kernel rangesR, we use them as kernel input specifications (preconditions)
and modify the state-of-the-art roundoff-error analyzer Daisy [55] to check for the absence
of cancellation errors and special float values. We chose Daisy because it was easy to extend
its analysis for cancellation detection and because it includes an optimization pass based on
rewriting that we utilized to reduce the roundoff errors in the kernels as described in Section 5.3.2.
The translation of numerical kernels and precondition annotations into Daisy’s input language
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in Scala is currently done manually but could be automated in the future.
Daisy’s core roundoff error analysis involves a forward data-flow analysis that computes

ranges and absolute error bounds for each intermediate arithmetic expression in an abstract
syntax tree. As part of this analysis, it checks for overflows and invalid expressions that could lead
to NaN values, as their absence is essential for a meaningful roundoff-error computation. Daisy
employs the interval and affine arithmetic abstract domains as mentioned in the background
section of this thesis (see Section 2.2) and also has the option to subdivide the input ranges to
further reduce the over-approximations. Ultimately, Daisy provides a worst-case absolute error
bound on the result value of the kernel.

Although the absolute error bound is limited in the absence of a global error analysis that
propagates errors introduced in individual kernels, Daisy’s computation of roundoff errors
for all intermediate expressions enables us to verify possible cancellations at every arithmetic
operation. To achieve this, we extend Daisy to check at every intermediate expression for possible
cancellations using the ranges and absolute error bounds that Daisy computes. At each binary
arithmetic operation, we compare the relative errors of the operands with the relative error of the
operation result. If the relative error increases by more than a certain factor, we report an error.

To compute the relative error for an intermediate expression x, we divide its worst-case
absolute error bound by the smallest value contained in the range of x. If the range of x ([x])
contains zero, we divide by a small constant c instead, ∆x

max(c,min([x])) , to ensure that the relative
errors are always well-defined. Although this does not produce a sound bound on the relative
error, it suffices for our purpose of making relative comparisons.

5.3.1 Analyze Spurious Warnings with CBMC

With our extension on top of Daisy, we can definitively prove the absence of cancellation errors for
each kernel, given the specified kernel input ranges. In cases where our extension of Daisy cannot
prove the absence, we issue a warning, allowing the user to inspect the reported intermediate
expression.

Due to Daisy’s over-approximations, our framework can result in both false positives for
cancellation warnings and false warnings about potential NaN and Infinity values. While we
have not found a tool that can more accurately detect cancellations, we can use a tool like
CBMC [119] for precise reasoning to address the latter issue. CBMC can identify possible
scenarios that may cause NaN or overflow and provide the user with a counterexample trace if
the issue is genuine. If it is, the user can examine this trace to debug issues, if necessary.

5.3.2 Optimize the Kernels

Having access to the kernel input ranges also enables us to optimize the kernel itself. We
utilize Daisy’s expression rewriting and exploit the non-associativity and non-distributivity of
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floating-point arithmetic to improve the numerical kernels locally. It is important to note that the
kernel input ranges are essential for this optimization since the optimal re-ordering of arithmetic
operations is dependent on the variable ranges.

5.4 Experimental Evaluation

In this section, we provide an overview of our benchmark suite consisting of real-world floating-
point programs in Section 5.4.1. We then present a comprehensive survey of the current
state-of-the-art static and dynamic analyses in Section 5.4.2 and evaluate their performance on
our benchmark suite. Finally, we evaluate our two-phase framework in Section 5.4.3.

5.4.1 Benchmarks

From fluid-dynamics problems to the resolution of dense systems of linear equations, numerical
programs are often written in C or C++. Between structure operations, dynamic memory
management, and other programming constructs, such code does not only contain arithmetic
operations. Instead, floating-point operations are usually clustered in what we call numerical
kernels. Furthermore, those kernels may only be reachable through several function calls or
loop iterations, which complicate their numerical analysis.

The FPBench benchmark collection [51] is a well-known suite of benchmarks used to evaluate
numerical analyzers. However, since it only contains isolated kernels, it is unsuitable for our
purpose, which is to analyze kernels within real-world numerical programs. Therefore, we have
compiled a new representative set of numerical programs from various application domains to
better reflect the complexity of real-world applications.

The selected benchmarks are C and C++ floating-point programs featuring arrays, structures,
loops, branching, and function calls and running on a single thread. We consider specified
bounds on the input variables of the program (program inputs) and identify a set of numerical
kernels containing a large number of arithmetic operations. Table 5.1 provides an overview of
the size in terms of the number of lines of code (LOC) and complexity of our benchmarks, as well
as the number and arithmetic complexity of the kernels that we chose for verification. We also
count the number of trigonometric operations (implemented in library functions) in the kernels,
and the ‘depth’ column shows the number of function calls needed to reach the kernels from the
program entry. We slightly modified the benchmarks by removing dynamic memory allocation,
pointer arithmetic, and I/O operations, which are challenging for most program analyses. We
explain each benchmark in detail below.

arclength: This program is a classic example of the arclength function [149] that calculates
the distance between two points along an arc. It accepts one input, which is the number of
arcs, and calculates the arclength of the specified points along those arcs. The kernel function
comprises of 20 arithmetic operations and 1 call to the sine function.
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benchmark lang. LOC #in. #func. #loops
kernels

# #arith op. #trig. op. depth

arclength C 31 1 1 2 1 20 5 1

linearSVC C 32 4 1 3 1 7 - 1

raycasting C 94 2 4 3 1 4 - 4

nbody C 108 21 10 9 2 9, 22 -,- 2, 2

pendulum C 141 4 11 8 2 24, 42 2,11 4, 2

fbenchV2 C 215 8 2 5 2 6, 14 -,5 2, 2

molecular C++ 323 3 8 13 3 8, 12, 11 -,-,3 1,1, 1

fbenchV1 C 380 8 10 8 4 19, 6, 14, 36 -,-,5,- 5, 2, 2, 3

reactor C++ 467 4 11 2 3 14, 11, 13 -,2,2 2, 0, 1

linpack C 544 5 12 31 1 8 - 2

lulesh C++ 2187 5 43 74 4 109, 77, 14, 41 -,-,-,- 6, 7, 6, 7

Table 5.1: Benchmark statistics

linearSVC: This program is derived from the training of a linear Support Vector Classifier
using the Python sklearn library on the Iris standard dataset. We obtained the source code from
the classifier using sklearn-porter [8]. We identified the predict function, which predicts the
classification of test data, as the numerical kernel. The kernel comprises 7 arithmetic operations,
and the program has 32 lines of code. It takes 4 inputs.

rayCasting: This benchmark program is a C-implementation of the ray-casting algorithm to
determine if a point is inside or outside a polygon, sourced from Rosetta Code [5]. The program
is written in C, spans 94 lines of code, and takes 2 program inputs. The numerical kernel of the
program consists of a function that performs vector multiplication and addition, which is called
several times at different stages of the program, after 4 function calls, and in various loops.

nbody: This program is also sourced from Rosetta Code [4]. The N-body problem involves
simulating the interaction of multiple masses (N bodies) under gravity and illustrating their
evolution over time. When N > 2, analytical solutions for this problem are not possible, and
computer simulations are required. This C code (108 LOC) takes as input the number of masses
and their positions (21 inputs for 3 bodies). For this benchmark, we identified 2 kernels, one
consisting of 9 arithmetic operations and the other consisting of 22 arithmetic operations. These
kernels calculate the velocity and acceleration of the bodies for a one-time step.

pendulum: This program simulates the inverted pendulum control problem, where the goal
is to keep a pendulum upright. The original Python code [2] was converted into a C program
consisting of 141 lines and 4 inputs. Within the function responsible for swinging the pendulum
up, we have identified 2 kernels that use trigonometric operations. The first kernel can be
reached after 4 function calls.

fbench: This benchmark is a ray-tracing algorithm used for optical design, which involves
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heavy usage of trigonometric functions [1]. We have created two versions of this benchmark:
one with user-defined trigonometric functions (V1) with 380 LOC and another with their library
versions (V2) with 215 LOC. The user-defined trigonometric functions are part of the original
code. We have identified 4 kernels for V1 and 2 kernels for V2. The two kernels present only in
V1 are located inside the user-defined sin and atan functions, each with 19 and 36 arithmetic
operations, respectively. It takes 5 function calls to reach the first kernel.

molecular: This C++ program, taken from [3], simulates molecular dynamics by tracking
the paths of unconstrained particles that exert a distance-dependent force on each other. The
program has 323 lines of code and takes three input variables. We have identified three numerical
kernels that perform 8, 12, and 11 arithmetic operations, respectively.

reactor: This C++ program [6] simulates the shielding effect of a slab designed to absorb or
reflect most of the radiation from a neutron source, demonstrating a Monte Carlo simulation
approach. The program consists of 467 lines of code and takes 4 inputs. We have identified 3
numerical kernels with multiple arithmetic and trigonometric operations, with the first kernel
reachable after 2 function calls.

linpack: Originally designed to benchmark the floating-point computation power of a
computer system, this C program performs LU factorization of a dense matrix, uses it to solve
a linear system, and measures the speed of the computation. In our context, the benchmark
takes 5 input seeds to generate a 5× 5 dense matrix. Within the program, we have identified a
numerical kernel with 8 arithmetic operations that compute the dot product of two vectors. This
kernel is called inside various loops in the program.

lulesh: This C++ program exemplifies the numerical algorithms, data movement, and
programming styles typical in scientific applications. It approximates the hydrodynamics
equations by partitioning the spatial problem domain into volumetric elements defined by
a mesh. The code, which is derived from [114], has 2187 lines and 43 functions and takes 5
program inputs. We have identified 4 numerical kernels that compute the area and volume of a
mesh. These kernels contain 109, 77, 14, and 41 arithmetic operations and can be reached after 6
or 7 function calls.

5.4.2 State-of-the-art on Floating-Point Programs

We begin by reviewing the current state-of-the-art techniques for analyzing floating-point
computations. We broadly classify them into two groups: program verification and automated
test generation. Table 5.2 summarizes the types of errors that these techniques can in principle
prove or disprove, as well as the type of programs they can handle. However, the implementation
of these techniques may be more limited than indicated in the table.

In the table, a check mark (✓) indicates that the technique can prove the presence (pres.
column) or absence (abs. column) of special float values and large round-off errors, while a cross
mark (✗) indicates that it cannot. We also distinguish between techniques that can handle entire
programs, those that require specifications (pre- and postconditions) for functions, and those
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Technique Tool
Error Type

ProgramSpecial Values Cancellation

pres. abs. pres. abs.

Bounded Model Checking CBMC (✓) (✓) ✗ ✗ whole

Abstract Interpretation Astrée ✗ ✓ ✗ ✗ whole

Deductive Verification Frama-C ✗ ✓ ✗ ✗ whole + spec

Roundoff Analysis Daisy, FPTaylor ✗ ✓ ✗ ✓ kernel

Dynamic Symbolic Execution KLEE-Float (✓) (✓) ✗ ✗ whole

Directed Greybox Fuzzing AFLGo ✓ ✗ ✗ ✗ whole

Guided Random Testing S3FP, ATOMU ✗ ✗ ✓ ✗ whole

Table 5.2: Comparison of different Floating-point Analysis Techniques and Tools

that can work with numerical kernels only.
We then select available representative tools implementing the techniques and evaluate them

on our benchmarks w.r.t. applicability and scalability. We review additional existing tools in the
related work in chapter 7.

Experimental Setup We selected representative tools for the techniques mentioned in Table 5.2
and used them to analyze our set of benchmarks. To use the tools, we annotated the input
ranges for the programs and added assertions at the beginning of the kernel code to check for
the absence of Infinity and NaN, using standard library functions like isinf’ and isnan’.

All experiments were conducted on a Debian server system with 2.67GHz and 50 GB RAM,
and we used 64-bit precision for the analyses. To ensure a fair comparison of results, we set a
time budget of 1 hour for all the tools.

For bounded model checking, we used CBMC [119] version 5.12 with MiniSat 2.2.0 as the
solver and a bound of 50 loop iterations only to verify the absence or presence of special values.
While other Satisfiability Modulo Theories (SMT) solvers like CVC4 or MathSAT could also
be used with CBMC, we found that CBMC performed better with MiniSat in our preliminary
experiments.

For abstract interpretation, we used Astrée [135] to analyze the full program and verify
the absence of special values. Astrée cannot detect cancellation errors. We used Astrée’s
linux64_b5162300_release for our experiments.

To use Astrée, we needed to modify the code as it does not allow us to assume the bounds of
global variables. For benchmarks with bounds on global variables, we manually wrote wrapper
functions that called the main functions with global variables and assumed the global bounds
inside the wrappers. We used Astr’ee’s interval domain as we did not observe a remarkable
difference between the interval and octagon domains for our benchmarks.

Our preliminary experiments showed that Astrée tends to compute a prohibitively large
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over-approximation for the benchmarks due to the presence of loops, for which it applies
widening to compute a fixpoint. We used semantic loop unrolling for all individual loops
to reduce over-approximation and make the analysis more precise. For the experiments, we
unrolled all loops up to 50 iterations, i.e., the tool analyzed up to 50 iterations individually and
used widening after that.

It is worth noting that Astrée’s analysis can be extensively parameterized with knowledge
of the program under analysis, which can make the analysis even more precise. However, this
requires vast manual effort and knowledge of the intricacies of the program, which we did not
perform for our experiments.

For directed greybox fuzzing, we employed AFLGo [27] downloaded on June 9, 2020, to
detect special values in the numerical kernels. We searched for NaN or Infinity values in
the variables of the kernels and created new branches in the program that halt the execution
abnormally if such values occur. We configured AFLGo to generate inputs that target these new
branches. If AFLGo reaches those branches, it reports a ’crash’ along with the inputs that caused
the crash.

Since AFLGo generates inputs using bit manipulations, we added checks at the beginning of
the program to verify the type of inputs. We only proceeded with the execution if a generated
input was a floating-point value within the defined input range.

All of the previously mentioned tools can be directly used on our annotated benchmarks;
hence, we compare them in Section 5.4.2. We also attempted to use other tools listed in Table 5.2,
but found that they either require extensive annotations or are not applicable to our benchmarks.

For example, Frama-C[116, 43], a state-of-the-art deductive verifier for C programs, requires
annotations for all functions in a program and does not support transcendental library functions
such as sine and exponent that are commonly used in numerical code, including our benchmarks.

Although the dynamic symbolic execution tool KLEE-Float [129] supports all of our bench-
mark constructs, it did not find any special float values within the specified time. S3FP [38]
and ATOMU [182] are representative tools of guided random testing that target roundoff errors,
but we found S3FP difficult to use as it requires the user to generate the high-precision (‘real’)
version of the code for comparison thus requiring manual intervention, and ATOMU did not
produce any results for our benchmarks within the specified time bound of 1 hour.

Results and Discussion Using CBMC and Astrée, we could only prove the absence of special
float values in linearSVC and rayCasting, which are among the smallest benchmarks. Astrée
was also able to prove the absence of special values in kernels 1 and 5 of fbenchV1. However,
for all other C benchmarks, Astrée generated warnings for the potential existence of special
values, and CBMC did not finish within the time limit. It may be noted that since November
2020, Astrée has added support for C++ programs. However, we leveraged Astrée’s version
linux64_b5162300_release, which did not support C++, and our work was submitted prior to
the release featuring C++ support. Hence, our experiments do not include the results for C++
programs.

AFLGo, on the other hand, found special values in kernel 2 of both nbody and pendulum. These
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results prove the presence of special values in those kernels with the given program input-bound
specifications and also indicate that greybox fuzzing can be effective in detecting special values.
We then modified the input-bound specifications of these programs using AFLGo and generated
tighter ranges for these benchmarks to avoid special values. With the new ranges AFLGo did
not find errors anymore. However, for both cases, Astrée still reported warnings.

Our findings in this section support the notion that current techniques are not efficient in
verifying the absence or testing the presence of NaNs and infinities in real-world numerical
programs. Static analysis techniques are either too imprecise or not scalable. While dynamic
analysis techniques are more scalable, they cannot prove the absence of these errors. Furthermore,
none of these techniques are capable of detecting cancellation errors.

5.4.3 Evaluation of The Two-phase Approach

We proceed to evaluate our two-phase approach and compare it with state-of-the-art tools under
a 1-hour time limit. We allocate 50 minutes for generating the kernel ranges and 10 minutes for
kernel analysis to ensure a fair comparison. We have empirically evaluated the impact of the time
limit and observed that increasing the time does not affect the benchmark results significantly,
while a smaller time limit yields worse results.

Comparison of Techniques for Kernel Range Computation The main step in our approach is
to compute the kernel ranges, which we compare using four different methods: blackbox fuzzing
(BB), guided blackbox fuzzing (GBB) (both implemented in Blossom), AFLGo with our iterative
widening (AFLGo), and a combination of BB and AFLGo iterative widening (BB+AFLGo). After
empirical testing, we have determined that GBB, with 5 mutants, performs the best for all our
benchmarks.

For AFLGo, we first fuzz the program for 5 minutes and then run our iterative widening that
employs the fuzzer in a refinement loop to widen the ranges obtained for the next 45 minutes
(see Section 5.1.1).

For BB+AFLGo, we use Blossom’s blackbox fuzzing for 25 minutes to generate the initial
ranges. We then apply our range-widening technique with AFLGo for the next 25 minutes on
these ranges.

To compare the computed kernel ranges, we calculate the width of each kernel range (x− x),
and we present the average width over all kernel inputs and 5 runs with different random seeds
in Table 5.3. Our goal with dynamic analyses is to expand the kernel ranges to cover as many
kernel inputs as possible.

In addition to the ranges obtained using our methods, we also include the sound over-
approximated ranges computed by Astrée, whenever available. While Astrée produces a warning
inside the arclength kernel, it still computes a finite range for the kernel input.

Among the 7 kernels where Astrée reports non-trivial ranges, in 5 of them, our fuzzing
techniques compute ranges that are similar to those of Astrée. In fact, for rayCasting, the ranges
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kernel-#vars
avg range width ker.

Astrée BB AFLGo BB+AFLGo GBB anlys

arclength 1-1 6.16e+4 3.14 3.14 3.14 3.14 ✓

linearSVC 1-4 3.73 3.73 3.71 3.72 3.73 (✓)
rayCasting 1-5 12.20 12.20 12.20 12.20 12.20 ✓

nbody 1-6 ∞ 1.09e+5 6.67e+4 1.21e+5 1.02e+8 ✓

2-9 ∞ 1.25e+4 8.45e+3 1.19e+4 8.91e+6 ✗

pendulum 1-4 ∞ 14.80 12.86 14.82 14.56 ✓

2-5 ∞ 22.38 17.61 22.39 22.16 ✓

fbenchV2 1-5 24.60 20.46 20.46 20.46 20.46 ✗

2-5 ∞ 21.36 21.36 21.36 21.36 ✗

fbenchV1 1-1 403.00 0.18 0.18 0.18 0.18 ✓

2-5 20.50 20.46 20.46 20.46 20.46 ✗

3-5 ∞ 21.36 21.36 24.76 21.36 ✗

4-1 1.57 1.54 1.54 1.54 1.54 ✓

linpack 1-8 ∞ 3.60e+6 4.44e+3 3.60e+6 2.11e+269 ✗

molecular 1-4 ✗ 9.04 9.04 9.04 9.04 ✗

2-6 ✗ 1.86 1.86 1.86 1.86 ✓

3-7 ✗ 12.88 12.88 12.88 12.88 ✓

reactor 1-1 ✗ 1.00 1.00 1.00 1.00 ✓

2 -6 ✗ 1.43e+2 9.35e+1 1.43e+2 1.46e+2 ✗

3-1 ✗ 2.50 2.50 2.50 2.50 ✓

lulesh 1-24 ✗ 4.97 4.80 4.97 4.95 (✓)
2-18 ✗ 6.09 5.51 5.50 5.89 ✓

3-9 ✗ 3.48 3.09 3.42 3.25 ✓

4-12 ✗ 5.95 5.49 5.93 5.77 ✓

Table 5.3: Comparison of kernel ranges generated by different techniques and settings

computed by both methods are exactly the same. However, in the remaining 2 kernels, Astrée
reports large ranges while all the fuzzing techniques compute smaller ranges with the same
width. This suggests that Astrée may be over-approximating the ranges or that the fuzzing
techniques were not able to discover new inputs within the given time limit.

For the cases where Astrée finds unbounded ranges or cannot compute ranges, we observe
that in all but three kernels, the four fuzzing techniques result in similar range widths. However,
for three kernels, GBB discovers significantly larger ranges, suggesting that it is capable of
finding outlier kernel inputs that other methods miss. Therefore, we conclude that guided
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benchmark kernel-#vars BB AFLGo BB+AFLGo GBB

linearSVC 1-4 - 2.21 - -

nbody 1-6 121.05 312.93 144.86 181.26

2-9 155.31 226.10 127.25 206.20

pendulum 1-4 0.69 51.77 0.57 5.25

2-5 0.69 44.37 0.54 4.48

fbenchV2 1-5 - - 1.99 -

2-5 - 0.04 - -

fbenchV1 1-1 - 0.03 - -

2-5 - - 1.99 -

3-5 - 0.04 8.85 -

linpack 1-8 0.01 100.15 - 114.58

molecular 2-6 0.25 8.0 0.15 0.33

reactor 1-1 - 0.01 - -

2-6 2.51 11.32 2.91 2.80

3-1 - 0.01 - -

lulesh 1-24 1.67 6.76 1.74 2.50

2-18 4.28 19.73 15.59 6.96

3-9 7.14 23.25 10.55 11.97

4-12 3.91 16.13 3.49 5.88

Table 5.4: Variation of computed kernel range widths (from the average width) for our three
fuzzing techniques (in %), ‘-’ denotes no variation

blackbox fuzzing is the most suitable method for computing kernel ranges in our benchmarks.
AFLGo often computes the smallest ranges, possibly because its objective is to maximize the

number of paths in the program to reach the target locations in the kernels. This approach may
prioritize generating values to find new paths over generating values that exercise already-found
paths, which could increase the width of the kernel ranges.

Effect of Randomness All fuzzing techniques, including BB, GBB, and AFLGo, rely on
randomness. To assess how this randomness affects the computed kernel ranges, we calculate
the variation of the range widths compared to the average range width per variable over 5 runs.
For 7 kernels, we detect no variation in the range width for any of the methods. The remaining
kernels and their variations are listed in Table 5.4. We have noticed that the benchmarks nbody

and linpack, for which GBB has found very large ranges, show significant variations for all
the methods, indicating that there may be some corner-case inputs that lead to large kernel
ranges, and GBB is the only method that can reliably find them. Moreover, we have observed
that AFLGo has larger variations due to randomness for a few additional benchmarks than BB



5.4 experimental evaluation 85

and GBB, whose variations are relatively small.

Conditional Kernel Verification Out of the 24 kernels, we were able to (conditionally) prove
the absence of special floating-point values for 16 of them and (conditionally) prove the absence
of cancellation errors for 14 kernels. The results are presented in the last column of Table 5.3.
The symbol ✓’ indicates that Daisy was able to prove both the absence of special values and
cancellation errors for the kernel with the given kernel ranges. The symbol (✓)’ indicates that
Daisy was able to verify only the absence of special values, while the symbol ‘✗’ indicates
that Daisy reported a special-value warning. For the relatively small benchmarks arclength,
linearSVC and rayCasting, our verification of the kernels is sound, i.e. unconditional, as we used
ranges computed by Astrée.

Special-Value Warnings When Daisy reports a warning, it is not certain that a kernel can
actually compute a special-value result for two reasons. Firstly, Daisy over-approximates the
concrete program semantics, which means that its analysis may be more conservative than
necessary and potentially report false positives. Secondly, the range we compute may contain
values that are not feasible during program execution. Therefore, to assist developers in
debugging warnings reported by the static analyzer, we use CBMC on those kernels.

CBMC was able to find counterexamples in all kernels for which Daisy reported warnings.
However, upon further inspection of the code, we discovered that the counterexamples reported
for nbody and fbench were not accurate for the specific program inputs we used. This was because
the true input range for these kernels was discontinuous, and the reported counterexamples
were for infeasible inputs. Specifically, for kernel 2 of nbody, a NaN could be produced if the
simulated bodies collide, which did not occur with our chosen initial conditions. Similarly, the
kernels in the ray-tracing algorithm of fbench could produce Infinity only if the ray was chosen
in a very specific manner, which was not possible with our selected program input ranges.

For linpack, the reported arithmetic overflow is indeed genuine. This is because a division
by zero can occur before the kernel if the input matrix contains a zero on the diagonal, leading
to undefined behavior and a huge range of kernel inputs. Similarly, for molecular and reactor,
arithmetic overflow can occur for a specific position of molecules and a specific value of the
angle between the particle’s direction and the X-axis, respectively.

It is worth noting that, with the counterexamples generated by CBMC, we could easily
distinguish between spurious and genuine warnings. In future work, it may be worth considering
refining the kernel monitoring approach to track multiple ranges per kernel, which could help
detect discontinuous ranges.

Cancellation Errors Our extension of Daisy reports cancellation-error warnings for one kernel
of linearSVC and one kernel of lulesh. We have used a threshold of 103 for reporting cancellation,
i.e., if the relative errors of the operands and the result differ by more than three orders of
magnitude, we report an error.

We inspected the kernel code and confirmed that the cancellation warnings are genuine, i.e.,
there are indeed inputs that will result in a large roundoff error. To confirm that these errors also
occur for the actual program inputs, we inspected the histograms of the kernel range (running
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Figure 5.3: Histogram of the input values of one of the inputs of lulesh’s kernel 1

fuzzing for a very short time only to not overwhelm the plotting procedure). For example, for
the lulesh kernel, Daisy raises a warning for a subtraction of two input values. The histogram
for one of the ‘offending’ inputs is shown in Figure 5.3 and confirms that the range of inputs is
continuous enough that the cancellation is indeed possible (the small gaps between the bars are
an artifact of plotting).

Although the number of cancellations found may seem small, we suspect that this is the
case because our benchmarks were mostly developed as reference or example programs. For
example, lulesh was specifically designed as a representative hydrodynamics simulation code,
and we expect it to have been carefully developed and tested.

Kernel Optimization We have additionally applied Daisy’s rewriting optimization to kernels
for which no possible special values were reported. This allowed us to reduce roundoff errors in
eight kernels, with six cases being particularly notable. For example, we reduced the error by
9.5% for linearSVC, 7.1% and 3.3% for two outputs of kernel 2 in pendulum, 19.8%, 4.0%, 5.8%,
and 5.8% for different kernel outputs of lulesh, and 33.3% for one output of molecular. These
results suggest that the ranges inferred in the first phase are indeed useful for the analysis of
numerical kernels.

5.5 Conclusion

Despite recent attention to floating-point analyzers, their focus has primarily been verifying
or debugging arithmetic kernels. Our review of existing techniques and tools has revealed
that few approaches with dedicated floating-point support are suitable for entire programs
without significant user expertise. However, we have found that standard greybox fuzzing
has been effective in identifying overflows and NaNs. Meanwhile, static analysis techniques
for demonstrating the absence of special values and cancellation errors are still restricted to
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programs with only a few bounded loops and numerical kernels, respectively.
Instead of attempting to scale up existing roundoff-error analysis tools to analyze entire

programs, we proposed a novel approach that combines these tools with more scalable analyses
to compute the kernel preconditions necessary for the roundoff analyses to be effective. We
demonstrated how relatively small modifications to directed blackbox and greybox fuzzing
techniques are sufficient to implement this framework. With these adaptations and changes to
an existing roundoff-error analyzer, we were able to conditionally verify the absence of special
values and cancellations in several numerical kernels in realistic floating-point programs that are
currently beyond the reach of existing analyses. Our analysis is also precise enough to identify
cases of cancellations. While our approach is not intended for certifying safety-critical systems,
it still provides valuable debugging feedback for many real-world applications.





6Sound Mixed Quantization of Neural Networks

Finite-precision programs deployed in embedded resource-constrained systems often
encounter a tradeoff between accuracy and efficiency. These programs are typically
designed with predefined accuracy bounds that specify acceptable levels of errors.

However, optimizing the program to effectively use limited resources while staying within these
error bounds poses a significant challenge. For example, using shorter precision can help reduce
resources such as chip area, but it also introduces larger roundoff errors. Thus, striking the right
balance between precision and resource utilization is important.

This work addresses the challenge of scaling up precision versus resource optimization for
neural networks in embedded applications. With the increasing use of neural network-based
closed-loop controllers in safety-critical applications, such as car and airplane models, adaptive
cruise control, and aircraft collision avoidance systems [111], ensuring the correctness while
optimizing the efficiency of these applications becomes crucial.

Recently, there has been a lot of work on automatically verifying the safety of limited-size
but interesting NN systems [69, 68, 67]. These methods consider NNs trained in high-precision
floating-point arithmetic on server-like machines equipped with graphics processing units
(GPUs). They aim to estimate safe, reachable states, considering bounded errors stemming
from noisy environments or inaccurate implementations. However, these methods do not verify
whether the implementations of the NNs remain within the computed bounds.

Directly implementing these high-precision floating-point NNs on resource-constrained
embedded systems is often infeasible. The utilization of high-precision floating-point arithmetic
can be prohibitively expensive for embedded applications. Additionally, executing floating-point
computations may require dedicated co-processors or software-based emulation capabilities,
which can be impractical for many embedded applications. Hence, to obtain efficiency, e.g., in
terms of area, latency, or memory usage, the trained NNs are quantized to use, for example,
low-precision fixed-point arithmetic [92, 87].

The increased efficiency due to low precision comes at the cost of reduced accuracy of the
NN computations since each operation potentially incurs a (larger) roundoff error. To ensure the
overall correctness of systems with NNs, we thus need to choose the precision for quantization
such that the safety of the overall system can still be guaranteed, i.e., the roundoff error is within
the application-specific bounds that are established by safety verification.

Numerous approaches have been proposed for the quantization of NNs, demonstrating
promising results on standard machine learning benchmarks [92, 87, 120, 163, 159, 146]. However,
these techniques are not applicable to safety-critical closed-loop control systems for two primary

89
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reasons. First, they are specifically designed for NN classifiers, focusing on dynamically comparing
classification accuracy on specific test datasets. Consequently, they cannot handle NN controllers
that implement regression tasks and compute (continuous) control values. Secondly, they lack
soundness, meaning they cannot guarantee results for all possible inputs, which is essential for
safety-critical systems.

On the other hand, existing tools that address sound quantization or precision tuning are
primarily intended for general-purpose arithmetic code [39, 54]. These tools face limitations
when applied to neural networks, either because they cannot work on fixed-point programs or
due to challenges related to scalability and significant over-approximations.

In this chapter, we introduce the first sound and fully automated mixed-precision fixed-point
quantizer that efficiently minimizes the number of bits needed to implement the NNs while
guaranteeing provided error bounds with respect to idealized real-valued implementations.

Optimizing mixed-precision fixed-point arithmetic efficiently and accurately is challenging
for two main reasons. First, fixed-point arithmetic is fundamentally discrete and the continuous
abstractions that allow the use of efficient continuous optimization techniques for floating-point
arithmetic [39] are not applicable. Secondly, due to the large choice (of combinations) of different
precisions for individual operations when implemented on configurable hardware such as
FPGAs, the search space for quantization is enormous and heuristic search based techniques [54]
becomes impractical.

To address these challenges, we propose formulating the sound fixed-point quantization for
feed-forward NNs as a mixed integer linear programming (MILP) problem. However, the direct
formulation leads to computationally intractable non-linear constraints. To overcome this, we
introduce the use of over-approximations, which relax the problem to linear constraints that can
be efficiently solved. Furthermore, we leverage the special structure of NNs to efficiently yet
accurately optimize the dot product operations by building on an existing technique for their
correctly rounded implementation [61].

We have developed a prototype tool called Aster that takes as input a trained NN written in
a small real-valued domain-specific language, a specification of the possible inputs, and an error
bound on the result, and outputs a mixed fixed-point precision assignment that is guaranteed
to satisfy the error bound (wrt. the real-valued input) and to minimize a (customizable) cost
function.

While our implementation specifically targets fully connected feed-forward deep NNs with
ReLU and linear activations, the proposed technique is fundamentally not limited to this specific
architecture; it can handle other networks that involve (sparse) matrix multiplications and
linearized activations.

We conducted a comprehensive evaluation of Aster by applying it to several embedded
NN controllers that are commonly used for verification from the literature [131, 111, 90] and
compared it with an existing sound quantizer [54]. Our results demonstrate the effectiveness
of Aster, as it successfully generates feasible implementations for a significantly larger number
of benchmarks than Daisy. When compiled for an FPGA using Xilinx Vivado HLS [171], the
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implementations generated by Aster require fewer machine cycles. Moreover, Aster shows
substantial improvements in optimization time, particularly when dealing with larger networks
comprising thousands of parameters.

Contributions To summarize, in this work, we present:

a) a novel MILP-based mixed fixed-point quantization approach that guarantees a given
roundoff error bound,

b) an experimental comparison against the state-of-the-art to demonstrate the effectiveness of
our approach on a benchmark set of NN controllers and

c) a prototype tool called ’Aster’, which is publicly available on Zenodo (see https://doi.org/

10.5281/zenodo.8123416).

The content of this chapter is based on our paper ‘Sound Mixed Fixed-Point Quantization of
Neural Networks [169], co-authored with Clothilde Jeangoudoux, Anastasia Volkova, and Eva
Darulova. Clothilde Jeangoudoux contributed to the initial experimental setup, while Anastasia
Volkova and Eva Darulova provided extensive feedback on the problem formalization and the
writing and editing of the paper.

6.1 Overview

Before presenting our sound quantization technique in detail, we provide an overview of the
problem and our proposed solution with an example.

Unicycle Model Consider a unicycle model of a car [111] that models the dynamics of a car
with 4 parameter variables—the Cartesian coordinates (x, y), the speed, and the steering angle.
We use a NN that was trained as a controller for this model as our example. This model is a fully
connected feed-forward NN with 1 hidden layer. The input of the network is a 4-parameter vector,
denoted by x0 =

[
x1

0 x2
0 x3

0 x4
0

]
where each input parameter is constrained by real-valued

intervals as shown below specifying valid input values to the network:

x1
0 ∈ [−0.6, 9.55], x2

0 ∈ [−4.5, 0.2], x3
0 ∈ [−0.6, 2.11], x4

0 ∈ [−0.3, 1.51]

The inputs are propagated through each layer by successive application of the dot product
operations, bias additions and activation functions. Specifically, the NN performs the following
computations:

layer 1: x1 = ReLU(W1 · x0 + b1) output: x2 = Linear(W2 · x1 + b2) (6.1)

x1 is the output of the first layer, which is then fed as input to the next output layer. The output
of the overall network is x2. Each layer is parameterized by a weight matrix Wi, a bias vector bi,
and an activation function αi. We have ‘ReLU’ and ‘linear’ activation functions and the following

https://doi.org/10.5281/zenodo.8123416
https://doi.org/10.5281/zenodo.8123416
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weight and bias parameters for the network:

layer1 : W1 =


−0.037 · · · 0.129
−0.003 · · · 0.099
−0.128 · · · 0.047
0.045 · · · −0.166

 , b1 =
[
0.028 · · · 0.342

]

output : W2 =

 0.052 0.137
· · · · · ·
−0.200 0.154

 , b2 =
[
0.273 0.304

]

While the network has only a single hidden layer, it has 500 neurons (elided above) and thus
results in a non-trivial size of the overall network.

In order to deploy such an NN controller in a safety-critical system, it is necessary to prove
the safety before the actual implementation. For instance, one may need to prove that the system
reaches a set of safe states within a given time window [111]. Since exact reasoning about
finite-precision arithmetic does not scale, existing verification techniques assume real-valued
parameters and arithmetic operations for the network [107, 98, 164, 170]. Still, they can typically
deal with bounded uncertainties from the implementation or measurements. Hence, we assume
a bound on the output error ϵtarget is provided.

As a controller is primarily executed on resource-constrained hardware, using floating-point
arithmetic may be overly expensive, as it requires either additional floating-point processor
support or slow software emulations. For this reason, NN controllers are generally quantized to
use fixed-point arithmetic.

Fixed-point Quantization In a fixed-point implementation, all program variables and constants
are implemented using integers, and have an (implicit) representation <Q, π>, consisting of the
total word length Q ∈ N (overall number of bits including a sign bit), and the position of the
binary point π ∈ N counting from the least significant bit. Further details about fixed-point
arithmetic and commonly used representation of arithmetic operations can be found in the
background section (Section 2.1.2) of this thesis and in the work by Yates et al.[176].

This representation effectively divides the number of overall bits into an integer part I =

Q− π − 1, and a fractional part π. The integer part must have sufficient bits to accommodate
large enough values and avoid overflow, resulting in a representable number range of [−2I , 2I].
The fractional part controls the precision of a variable or an operation, where a higher number of
fractional bits allows for more precise value representation. Assuming that each operation uses
truncation as the rounding mode, the maximum roundoff error with π fractional bits is 2−π.

It may be noted that in this work, we use truncation as the rounding mode as it is the most
commonly used one (default in circuit design and synthesis compilers such as Xilinx) and its
runtime efficiency compared to other rounding modes like rounding to the nearest.

In our example (Equation 6.1), the input x1
0 is in the range [−0.6, 9.55]. The number of integer

bits required to hold this range, i.e., to represent the maximum absolute value 9.55 without
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overflow, is 5 (including the sign bit). Assuming 32 bits are available for wordlength (Q = 32),
then we have (32− 5) = 27 bits remaining for the fractional part. Hence, the maximum roundoff
error for the input is 2−27.

We need to assign each operation enough integer and fractional bits to guarantee overflow-
freedom and sufficient overall accuracy of the final result. To ensure that the overall roundoff
error does not exceed a specified target error bound ϵtarget, it is necessary to propagate and
accumulate the errors that occur in individual operations. However, this process can be complex
and challenging to perform manually. Additionally, to optimize resource usage, we want to
assign only as many bits as are actually needed.

Mixed-Precision Tuning Using a uniform fixed-point precision, where the same word length
is applied to all operations, may not be optimal. For instance, if a single precision is insufficient
at a certain point in the program, we need to upgrade all operations to a higher precision to
guarantee the error bound. However, not all layers or operations have the same impact on the
overall accuracy of the program. Therefore, it can be more resource-efficient to assign different
precisions (word lengths) to different operations to achieve a target error bound. This approach,
known as mixed precision optimization, allows for a more flexible and efficient implementation of
the model.

Existing sound techniques applicable to fixed-point arithmetic rely on a heuristic search
that repeatedly evaluates roundoff errors for different precision assignments [54]. While this
technique works well for small programs, the repeated global roundoff error analysis quickly
becomes expensive, as we show in our evaluation in Section 5.4. Moreover, these techniques
are designed for general-purpose straight-line programs, and do not take into account the
unique structure of NNs. To utilize these tools, one must assign individual scalar variables to all
weight matrix and bias vector elements and unroll all loops, resulting in a significantly complex
straight-line expression.

For the unicycle example, only computing the roundoff error for a uniform 32-bit implemen-
tation using the state-of-the-art tool Daisy [54] takes 5.91 minutes, and mixed-precision tuning
of this example takes more than 2.7 hours.

Our Proposed Technique We present an optimization-based technique for generating a mixed-
precision fixed-point implementation that is guaranteed to meet a given error bound ϵtarget and
ensures no overflow. We encode this tuning as a mixed integer linear programming (MILP)
problem for which efficient solvers exist. The mathematical model for the entire problem will
result in fundamentally nonlinear constraints. To be able to utilize the efficiency of modern
MILP solvers, we perform several over-approximations to generate a linearized problem. We
explain the details of linearization in Section 6.2). Our MILP constraints optimize the number of
fractional bits such that overflow freedom is ensured even in the presence of errors and a cost
function is minimized.

Our approach is parametric in the cost function to be optimized as long as it can be expressed
as a linear expression. Since the actual cost is highly dependent on the target application and
hardware for the purpose of evaluation we consider the generic cost function implemented in
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the state-of-the-art tool Daisy that counts the cost as the total number of bits needed.
Assuming ϵtarget = 0.001 as the error bound for the unicycle example, Aster with our

MILP-based mixed-precision tuning assigns different precisions (using 18, 19, 20, 21, 24, 30, and
34 bits) to different variables, constants, and operations in just under 50 seconds (i.e. significantly
less than the 2.7 hours taken by Daisy). When compiled for an FPGA architecture with Xilinx
Vivado HLS tool, Aster’s generated code takes only 27 machine cycles to execute, whereas Daisy’s
generated code, both uniform and mixed-precision, take 178 cycles.

6.2 MILP-Based Mixed-Precision Tuning

In this work, we specifically target feed-forward NNs with ’ReLU’ and ’linear’ activation functions
that are designed for solving regression problems and computing continuous outputs. Such
networks may, for instance, be utilized in closed-loop control systems, where their safety can be
proven using various techniques [107, 98, 164, 170] that typically assume real-valued arithmetic
operations, inputs, and constants. Our goal is to optimize the resource usage of the implemented
networks while maintaining safety by ensuring that the computed (control) outputs remain
within a specified error bound (that e.g., arises from a safety proof).

Problem Definition Given a real-valued NN architecture, ranges of inputs, and a roundoff error
bound at the output, the goal is to generate a fixed-point mixed-precision NN implementation
that minimizes the precision of the variables and constants while ensuring that the roundoff
errors at the output remain within the specified bound.

Our approach is inspired by successful mixed-precision optimization techniques for floating-
point programs [39] that phrase precision tuning as an optimization problem (which it ultimately
is). They rely on the dynamic ranges of floating-point arithmetic that allows bounding floating-
point roundoff errors by nonlinear continuous abstractions, which, in turn, enables continuous,
purely real-valued optimization techniques for precision tuning.

However, such continuous techniques cannot be applied to fixed-point arithmetic programs
because in fixed-point, the ranges of individual operations need to be fixed at compile time, i.e.,
the number of integer bits for each operation has to be pre-determined for all possible inputs.
Hence, a continuous abstraction is not possible.

Furthermore, while floating-point arithmetic typically supports only a limited number of
precisions (such as 16, 32, or 64 bits), fixed-point arithmetic allows any number of bits to be used
for any operation and a more precise encoding is necessary to capture this.

We can capture different numbers of bits precisely by using integer constraints. However, at
the same time, we also need to guarantee that a target error bound is satisfied and this error
is a non-integer. Hence, we choose to encode fixed-point precision tuning as an Mixed-Integer
Linear Programming (MILP) problem [15]. In MILP, some decision variables are constrained to be
integers, and other variables can be real-valued. Integers allow us to directly encode the discrete
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decisions about how many bits to use for operations, and real-valued constraints effectively
express error constraints.

The primary constraint of our optimization problem guarantees that the total roundoff
error remains inside the target error bound. At the same time, we also need to ensure no
overflow. Encoding these two conditions together would result in non-linearity because of the
dot operations in a NN that perform multiplications. Unfortunately, only linear constraints
can be efficiently handled by state-of-the-art MILP solvers; nonlinear mixed integer arithmetic
is, in general, NP-hard, with non-convex problems being undecidable. Hence, we soundly
over-approximate and linearize constraints as and when necessary to make our solution efficient
and feasible.

There are two primary sources of non-linearity in the optimization problem: 1) computation
of ranges of all arithmetic operations in order to ensure that there is no overflow, and 2)
optimization of fractional bits for all variables and constants to guarantee the error bound.

To avoid the first case, we pre-compute a sound over-approximation of real-valued ranges for
all operations efficiently using interval arithmetic (Section 6.2.1). From these, we compute the
integer bits needed to represent the real-valued ranges. However, we still need to ensure that the
finite-precision ranges (real-valued ranges + roundoff errors) do not overflow. We encode this as
a linear range constraint in our optimization problem (Section 6.2.2), thus ensuring no overflow
even in the presence of errors.

For the latter, instead of optimizing for all intermediate variables and constants individually,
we treat the dot product as a single operation and encode only the assignment of the fractional
bits of the dot product results.

However, to generate the final implementation, we still need to assign precisions to all
intermediate variables and constants such that the roundoff errors in intermediate computations
do not affect the result. To achieve this, we leverage existing techniques [61, 28] to determine the
number of fractional bits required for the intermediate variables in a dot product to guarantee
an overall error bound. We discuss these techniques in more detail in Section 6.2.3

Provided that the cost function is also linear, we can then encode the precision tuning
problem for NNs with ReLU and linear activation functions with purely linear constraints.
Linear constraints can be solved efficiently by state-of-the-art MILP solvers.

As an additional performance optimization, we choose to assign uniform bit lengths for the
operations within each individual layer. That is, within a layer, all dot products are assigned the
same bit length (and similarly for bias and activations). However, the bit lengths can vary from
layer to layer. This choice helps to limit the number of constraints in our approach, leading to
improved efficiency. It is important to note that this choice is made for optimization purposes
and is not a fundamental limitation of our approach.

Overall, our technique consists of three steps:

1) computing the integer bits of program variables using interval arithmetic,

2) optimizing the fractional bits of dot, bias, and activation operations by reducing it to a
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[
x1

1
x2

1

]
= ReLU

([
0.1 0.2
0.2 0.15

]
︸ ︷︷ ︸

W1

·
[

x1
0

x2
0

]
+

[
1.0
2.0

]
︸ ︷︷ ︸

b1

)
, x2 = Linear

( [
0.1 0.2

]︸ ︷︷ ︸
W2

·
[

x1
1

x2
1

]
+
[
0.5
]︸ ︷︷ ︸

b2

)

Figure 6.1: Running example for MILP modeling

Mixed Integer Linear Programming problem and

3) computing the precision of all constants and intermediate variables in dot products.

Our tool, Aster, performs all these steps fully automatically. We will explain each of these steps
in detail next. Though Aster is primarily designed for continuous feed-forward NN controllers,
our proposed technique can be extended to other types of NNs that have sparse matrices and
other non-linear activation functions, such as sigmoid that can be piece-wise linearized [175].

Running Example We will illustrate our approach using the following small (artificial) NN
presented in Figure 6.1 as our running example: The input to the network is a vector x0 consisting
of 2 elements, whose ranges are provided by the user: x1

0 = [−10, 10] and x2
0 = [−5, 5]. The NN

produces a single output x2. To generate an implementation of the network, the user needs to
provide the network architecture (i.e., the weight matrices and bias vectors, as well as activation
functions for each layer) as input to Aster. Additionally, the user specifies the precision of the
input and if the input is represented exactly, which incurs no roundoff error in the input. The
precision of inputs is typically known from the specification of sensors or similar in the context
of embedded systems, but our approach also supports inputs with no initial roundoff errors.

Assume, for the running example, the inputs are exactly represented with 10 bits. The input
specification implies that 5 bits are required to represent the maximum absolute value of the
ranges, which is 10, leaving 5 bits for the fractional part of the inputs, with no initial roundoff
error. The goal is to generate a quantized mixed-precision implementation of the NN such that
its cost is minimized and the output error is bounded by a user-specified target error ϵtarget = 0.1.

6.2.1 Step 1: Computing Integer Bits

Aster starts by computing the integer bits for all program variables and constants using a forward
data-flow analysis that tracks the real-valued ranges at each abstract syntax tree (AST) node. For
this purpose, Aster utilizes the widely used and efficient interval arithmetic. We have presented
the details of interval arithmetic in Section 2.2.1. In this chapter, we only show how we compute
intervals for the activation functions:

ReLU(x) = [max(lo, 0), max(hi, 0)], Linear(x) = [lo, hi]
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Here lo and hi denote the lower and upper bounds of the interval of x, respectively. With ReLU,
the resulting interval is the same as the interval of x directly if both lo and hi are positive;
otherwise, it returns 0 for the negative part. After applying the linear activation, the interval is
the same as the input x.

Given the initial ranges of the inputs, Aster uses interval arithmetic to propagate the intervals
through the program and computes an interval for all variables, constants, and intermediate
results that soundly over-approximates the real-valued ranges. Finally, Aster uses a function
intBits 1 that computes, in the two’s complement binary representation, the number of integer
bits needed for these real-valued ranges such that all possible values can be represented without
overflow.

In principle, the finite-precision ranges, i.e., real-valued ranges with roundoff errors, may
need more integer bits to be represented than the real-valued ranges alone. However, as the
errors are usually small, they typically do not affect the integer bits in practice and are thus
a good estimate. In addition, our MILP constraints (detailed next) ensure that these initial
estimates of the integer bits are sufficient to avoid overflow, i.e., these estimates only need to be
good approximations. These integer bits are later added with the fractional bits to compute the
total word length required to represent each program variable and constant.

For our running example in Figure 6.1, given the input ranges, Aster computes the real-
valued ranges of the first layer as [-3, 3], and [-5, 5] after the dot operation and the bias addition,
respectively. From this, Aster determines that 3 and 4 integer bits are needed to represent the
signed integer part of the dot operation and bias addition, respectively, at layer 1. It analogously
computes the integer bits for all operations in all layers.

6.2.2 Step 2: Optimizing Fractional Bits

Next, we reduce the problem of computing the fractional bits of dot product results, the addition
of bias, and the activation functions to a mixed integer linear programming problem. We first
provide an overview of the relevant variables that we will use to formulate our MILP problem
in Table 6.1. The variables specific to a layer i are referenced along with the subscript i and op
can denote the dot product, the bias addition, or the activation function.

We divide these inputs into four categories:

a) User inputs The variable ki, which denotes the number of neurons at layer i, is deduced by
Aster from the NN given by the user. The user directly provides the remaining values.
The variables QWi and Qx0 denote the word length of the maximum weight and the largest
input from the input vector x. The input word length is used as is. However, the word
lengths of maximum weights are required in the beginning only to make the optimization
problem linear. We later deduce these word lengths automatically considering the result’s

1intBit(x) = binary(abs(x).integerPart).numOfDigits, where it converts the integer part of x into 2’s comple-
ment binary representation and then determines the number of digits in the binary representation.
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user inputs

ki number of neurons at layer i
QWi word length of maximum weight at layer i
Qx0 maximum word length of inputs
lo lower bound on fractional bits π

hi upper bound on fractional bits π

pre-computed inputs

Rop
i real-valued ranges of operation op at layer i

Iop
i number of integer bits of the finite-precision range of operation op at layer i

Aop
i maximum representable ranges of operation op without overflow at layer i

decision variables

ϵ
prop
i propagation error at layer i

ϵnew
i new roundoff error at layer i

γ
op
i cost of an operation op at layer i

π
op
i number of fractional bits of op at layer i

other variables

bop
i indicator variable for operation op at layer i

optop
i optimal variable for πop at layer i

Table 6.1: Variable notations and definitions (op: dot / bias / activation)

precision of the dot product, which we will explain in Section 6.2.3. The user additionally
specifies a range for the fractional bits [lo, hi] (one for all operations and layers) that will be
considered during optimization.

b) Pre-computed inputs The values of these variables are pre-computed by the first step.
Rop

i and Iop
i denote the real-valued range and the number of integer bits required for

the finite-precision range of each operation op at layer i. Aop
i denotes the maximum

representable range of each operation op without overflow at layer i.

c) Decision variables: The decision variables are those for which the MILP problem will be
solved. The variables ϵ

prop
i and ϵnew

i are the error variables representing the propagation
error and newly introduced error at layer i. These variables constitute the error constraint.
γ

op
i represents the cost of each operation op at layer i where op ranges over dot, bias, and

activation function and is used to formulate the objective function. The variables π
op
i

denote the fractional bits of all operations at layer i.

d) Other variables: The other variables are used internally by Aster to linearize non-linear
constraints (without over-approximations). The indicator variables are used to select
the optimized fractional bit length, and the optimal variables are used to store the
corresponding errors. We show these variables in Figure 6.3 and provide a detailed
explanation of their purpose when discussing the process of linearization.
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minimize: γ =
n

∑
i=1

γdot
i + γbias

i + γα
i

where, γdot
i = ki ∗ ki−1 ∗QWi ∗ πdot

i
γbias

i = max
(
πdot

i , πbias
i
)

γα
i = πbias

i
subject to:

C1(error) : ϵn =
n

∑
i=1

(ϵ
prop
i + ϵnew

i ) ≤ ϵtarget

where, ϵ
prop
i ≤ 2−π0 , when i = 1

=

(
maxki

j=1

ki−1

∑
l=1

Wi,jl

)
∗ ϵi−1, when i > 1

ϵnew
i ≤ 2−πdot

i + 2−πbias
i

C2(range) :
∀i ∈ n, Adot

i ≥ Rdot
i + ϵ

prop
i + ϵdot

i
∀i ∈ n, Abias

i ≥ Rbias
i + ϵi

Figure 6.2: The MILP formulation with non-linear constraints

Problem Formulation Our objective is to minimize a cost (function γ) subject to error and
range constraints denoted by C1 and C2, where the constraints ensure that the user-provided
error bound is respected and that no overflow occurs, respectively. Figure 6.2 presents the
overall formulation of the MILP constraints for optimizing fractional bits. We provide a detailed
explanation of each constraint; we emphasize the references to individual constraints in Figure 6.2
using underlines. We explain each part of these constraints next.

Cost Function Each layer has three operations: first, the dot product is computed, then the
bias vector is added, and finally, an activation function is applied. We compute the costs of these
operations individually and add them up to compute the total cost of each layer. The total cost
over all layers is then computed by adding up the costs of n layers (see γ in Figure 6.2).

This cost function closely follows previous work [109] and computes the total number of
bits needed to implement the NN. Our approach supports other cost functions, e.g., capturing
performance or energy, as long as they can be expressed as linear expressions. Since the latter is
highly hardware-dependent, we implement the cost function used in previous work.

The cost of the dot operation at layer i, denoted by γdot
i , depends on the number of inputs

ki−1, the number of neurons ki, and the weight matrix Wi of the layer. The dot product at layer
i is defined by expanding it into multiplications and additions of the weights and inputs and
adding them for all ki neurons of the layer:

doti =
ki

∑
j=1

(
ki−1

∑
l=1

Wi,jl × xi,l

)



100 chapter 6. sound mixed quantization of neural networks

Recall that our approach takes as input the maximum word length of the weights QWi for each
layer. With the QWi and the fractional bits of the dot product πdot

i (decision variable), we can
over-approximate the total cost of the dot operation at layer i by multiplying it with QWi , the
number of neurons of the previous layer (ki−1) and the current layer (ki) (γdot

i in Figure 6.2).
For the first layer, we consider the number of input variables instead of ki−1. Note that we

only use an estimate of the maximum word length of W, as the actual word lengths of W are not
known beforehand, and defining them as variables makes the cost non-linear. We later assign
precisions for W from the solutions of the MILP problem, which we explain in Section 6.2.3.

As the bias vector is only added with the result of the dot product, the cost of this addition
denoted as γbias

i is the maximum of the fractional bits of the result of the addition and fractional
bits of the dot operation (γbias

i in Figure 6.2). Technically, the ‘max’ function is also non-linear. We
show linearized constraints for this function in Figure 6.3.

Finally, the cost of the activation is a function of πbias
i . We assume ReLU and linear activation

functions for the networks. As these two activation functions are linear functions of πbias
i , the

cost is the same as πbias
i (γα

i in Figure 6.2).
Let us assume for our running example in Figure 6.1 that QW = 8 for both layers. The

network has 2 input variables, 2 neurons in the first layer and 1 neuron in the output layer. With
our formulation, the cost of the whole network is defined as follows:

(2 ∗ 2 ∗ 8 ∗ πdot
1 ) + max(πdot

1 , πbias
1 ) + πbias

1︸ ︷︷ ︸
layer1

+ (2 ∗ 1 ∗ 8 ∗ πdot
2 ) + max(πdot

2 , πbias
2 ) + πbias

2︸ ︷︷ ︸
output

Error Constraint The error constraint C1 in Figure 6.2 states that the overall roundoff error of
the full network ϵn needs to be bounded by the user-specified error ϵtarget. For this constraint,
we need to express the roundoff error as a function of the precisions of individual operations.

To compute the roundoff error at each layer i, we need to track the propagated error ϵ
prop
i from

the previous layer and compute the new roundoff error ϵnew
i committed by the operations at layer i.

The total roundoff error ϵn is then defined as the sum of all the errors at all layers.
The initial error ϵ0 is considered as the propagated error at layer 1. This error ϵ0 is bounded

by the function of fractional bits of inputs (ϵprop
1 in Figure 6.2) that is determined by the word

length of the inputs Qx0 and the integer bits needed to represent the range of the inputs Rx0

computed using the intBits function: π0 = Qx0 − intBits(Rx0).
The propagation error at layer > 1 depends on the errors from previous layers as well as the

absolute magnitudes of the weights (a weight that is bigger than one will magnify an existing
error). Thus, the propagation error ϵ

prop
i for layer > 1 is defined as the error at the previous layer

ϵi−1 multiplied by the sums of the absolute weights of each neuron. In practice, we sum the
absolute weights of each neuron (absolute sum over the number of inputs ki−1) and take the
maximum result as a factor to amplify the propagation error (maximum over the number of
neurons ki) (see ϵ

prop
i in Figure 6.2).

This is a sound over-approximation of the total propagated error as we assume the maximum
magnification of errors for all neurons in the previous layer. For this constraint, Aster computes



6.2 milp-based mixed-precision tuning 101

the maximum values of the weights over the neurons for each layer beforehand and uses them
as constants in the optimization problem, thus preserving linearity.

The new roundoff error at layer i is defined as the sum of the errors for the activation
function, for the dot computation, and for the bias addition. The ReLU activation function
(α(x) = max(0, x)) and the linear activation function (α(x) = x) do not affect the error. Thus
the new error is bounded by 2−πdot

i and 2−πbias
i , where πdot

i = Qdot
i − Idot

i and πbias
i = Qbias

i − Ibias
i .

For the dot and bias operation, the error is computed considering the fractional bits of these
operations.

This error constraint is non-linear (2−π
op
i ). We linearize the error constraint for the optimization

exactly by considering the user-provided range [lo, hi] for π
op
i . We explain the linearization

constraints in Figure 6.3. We also assume a roundoff error on the result of the dot product only
and do not account for the roundoff errors of the individual operations of the dot product in
our MILP constraints. We do this to avoid nonlinearity in the constraints, and rely on the fact
that the dot product can be computed with faithful rounding up to the chosen format using the
technique from de Dinechin et.al. [61]. We explain the details of computing the intermediate
formats in Section 6.2.3.

Let us derive the error constraint for our running example in Figure 6.1. We considered
no input error here: ϵ0 = 0.0. We first compute the total error in layer 1. This error is then
considered as the propagated error for the output layer by magnifying it with the maximum
absolute sum of weights: max ((0.1 + 0.2), (0.2 + 0.15)) = 0.35. Thus the overall error constraint
is (assuming ϵtarget = 0.1): (2−πdot

1 + 2−πbias
1 ) ∗ 0.35 + (2−πdot

2 + 2−πbias
2 ) ≤ 0.1.

Range Constraint As we have only considered the real-valued ranges for computing the integer
bits of the variables and constants in the first phase, we must ensure that the finite ranges after
each operation in each layer do not overflow. Our hypothesis is that the roundoff errors are small
enough to keep the integer bits unaffected. Accordingly, in our range constraint C2 in Figure 6.2,
we want to ensure that the number of integer bits required to represent the finite-precision
range after each operation Iop

i is enough to store the integer bits of the finite-precision result
(real-valued ranges together with the roundoff errors).

However, directly implementing this constraint would result in applying the function intBits

on error decision variables, which is non-linear. Hence, we reduce the problem of computing
the integer bits to ensure the ranges of the finite-precision result remain inside the maximum
representable range (Aop

i ) with the integer bits of the real ranges after every operation at layer i.
We pre-compute the integer bits required for the real-valued result and use them to generate

the maximum representable range after each operation. For the dot operation, we have the
propagation errors ϵ

prop
i from the previous layer, and the operation itself introduces the new

roundoff error ϵdot
i . Hence, after the dot operation, the finite range includes these two errors.

For bias addition, however, we have the error from the dot operation as a propagated error
along with the new roundoff error ϵbias

i introduced by the addition. The total error after the bias
addition is essentially the total error ϵi of the layer i as the activation error is zero for the ReLU
and linear functions.
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Let us consider our running example in Figure 6.1. As there is no initial error, for the first
layer, we simply add the roundoff error committed by the dot operation. For the bias, we add a
roundoff error for both the dot and the bias operation. The range constraints for the first layer
are thus: [−4.0, 4.0] ≥ [−3.0, 3.0] + ϵdot

1 and [−8.0, 8.0] ≥ [−3.0, 6.0] + ϵdot
1 + ϵbias

1 . Similarly, we
generate range constraints for all the layers. Given the user inputs, our prototype tool, Aster,
automatically encodes the objective cost function, the error, and the range constraints for the
optimization problem.

Linearization of Constraints However, we still have nonlinearity in the objective cost function,
which includes the nonlinear function max. The error constraints are also nonlinear in terms of
the number of unknown fractional bits (π).

C0(1) : γbias
i ≥ πdot

i

C0(2) : γbias
i ≥ πbias

i

C1(1) : optdot
i =

m

∑
j=1

(Tj × bdot
j )

C1(2) : optbias
i =

m

∑
j=1

(Tj × bbias
j )

C1(3) :
m

∑
j=1

bdot
j = 1

C1(4) :
m

∑
j=1

bbias
j = 1

C1(5) : ϵnew
i ≤ optdot

i + optbias
i

Figure 6.3: The linearization constraints

We linearize these constraints exactly with-
out introducing any approximation. Figure 6.3
presents our linearization constraints for the op-
timization. Linearization of the cost objective is
straightforward. The max function of two variables
πdot

i and πbias
i (as shown in Figure 6.2) in the form

γbias
i = max(πdot

i , πbias
i ) can always be divided into

a set of two linear constraints such that γbias
i is al-

ways bigger than or equal to all values of both πdot
i

and πbias
i . We utilize this argument to linearize our

max function as C0(1−2) in Figure 6.3.
Linearizing the error constraint is, however,

more tricky. To linearize the error constraint, we use
indicator constraints [29] that uses binary variables to
control the values of πdot

i and πbias
i . The nonlinear

error constraint is defined in Figure 6.2 as ϵnew
i ≤

2−πdot
i + 2−πbias

i where πdot
i and πbias

i are unknown
integers in an user-provided integer range [lo, hi]. Recall that we want to compute the values of
πdot

i and πbias
i that minimize our objective function.

As we already know the integer ranges of the variables, the possible values for πdot
i and πbias

i

become finite (m) as they are exactly the same as the number of integers in the given range. With
these m values, we define a set of m discrete reals that represent the set of possible values of
2−πdot

i and 2−πbias
i : T = [2−hi, 2−(hi−1), · · · , 2−lo].

We introduce m binary indicator variables bdot and bbias for each valuation of 2−πdot
i and

2−πbias
i within the specified range. Intuitively, the indicator variables select only one specific

value from the list T. We formulate two indicator constraints C1(1−2) for each layer i as presented
in Figure 6.3.

The constraints C1(1−2) select the values of πdot
i and πbias

i that are optimal (optdot
i and optbias

i )
respectively. They also state that if bdot

j (or bbias
j ) is true, we select the value 2−(hi−j−1) from the list

T for optdot
i (or optbias

i ). Obviously, we want only one of the bdot
j (or bbias

j ) to be true. Hence, we add
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another two constraints C1(3−4) in Figure 6.3 to enforce that only one of these binary indicator
variables is true. With these new indicator variables and constraints, finally, we linearize the
original nonlinear error constraint ϵnew

i in Figure 6.2 as C1(5) in Figure 6.3. Our tool, Aster,
encodes these linearization constraints for all layers fully automatically.

Let us assume for our running example in Figure 6.1 that the range is provided as
[lo, hi] = [4, 8] which makes the possible values for πdot

i and πbias
i : T = [2−8, 2−7, 2−6, 2−5, 2−4].

Next, we define 5 binary indicator variables for bdot and bbias each. The indicator constraints
for the dot product in the 1st layer are as follows: optdot

1 = ∑8
j=4 2−j × bdot

j and ∑8
j=4 bdot

j = 1.
Similarly, we have indicator constraints for bias. If the solver picks bdot

7 = 1 and bbias
8 = 1, the

corresponding new error is then bounded by 2−7 + 2−8, and the optimized fractional bit lengths
of dot and bias are 7 and 8, respectively.

6.2.3 Step 3: Correctly Rounded Precision Assignment

After solving the MILP, we obtain the fractional bits required for the dot operation and the
addition of bias, and we know that the integer bits from the first phase are enough to prevent
overflow even in the presence of errors. However, the fractional bits computed for the dot product
only apply to the result of the dot operation. To generate a complete executable fixed-point
implementation, we must also compute the precision of the intermediate operations (sum of
products of the dot) and the constants of weights. In particular, we need to determine their
fractional bits such that the results are rounded correctly up to the precision determined by the
MILP.

Our algorithm to compute the intermediate and constant word lengths is based on the
fixed-point sum of products by constants (SOPC) algorithm [61, 28]. We first compute the
fractional bits for the intermediate computation of a dot. Assume x to be a vector of p fixed-point
variables in formats (Ixi , πxi) and c be a vector of p fixed-point constants in formats (Ici , πci)

where I denotes the integer bits. Our goal is to compute y = ∑
p
i=1 ci · xi correctly.

The integer bits of the output Iy are already computed in the first step, such that no overflow
occurs. The fractional bits of the output πy are determined by MILP in the second step. These
two combined represent the output precision and an accuracy requirement, which ensures that
the roundoff error is bounded by 2−πy .

As it was shown in [61], if the integer bits of output Iy guarantee no overflow, and partial
products si = ci · xi are performed exactly, then performing the summation in an extended
format (Iy, πext) guarantees the output error bound. The number of extended fractional bits
depends on the number of terms that need to be added: πext = πy + ⌈log2 p⌉+ 1. Note that the
integer bit positions for the intermediate results are not changed, which might lead to overflows
in partial sums during the computation of the dot product. However, because of the properties
of 2’s complement, these overflows do not influence the result accuracy as long as the output is
representable with the output integer bit Iy [28].

Next, we must obtain the fractional bits of the weight constants (wi ∈ W) such that the
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error bound holds. As we have mentioned before, the intermediate results of the partial sums
need to be done with πext fractional bits to ensure correct rounding. Now, in order to ensure
that the accuracy of the product wi × xi is up to πext, the following property needs to hold:
πwi + Ixi ≤ πext, which implies that the πwi needs to be at least πext + Ixi .

Finally, the result of the dot product is added to the bias vector. From the MILP, we obtained
the fractional bit of the result of the addition πbias. We need to compute the fractional bits of
the bias constants (bi ∈ b). To ensure that the roundoff error at the result is bounded by 2−πbias ,
the fractional bits of bi is set to be πbias. As the formats of the operands might differ, we set the
format of the bias upfront to ensure πbias fractional bits in the result.

6.2.4 Soundness

THEOREM. Given a set of input rangesR and a specified error bound ϵtarget for a NN, if the MILP-based
mixed-precision optimization terminates successfully, it returns a fixed-point precision assignment for
the network such that for all inputs i ∈ R, the maximum roundoff error ϵn of the network (relative to a
real-valued implementation) does not exceed ϵtarget, i.e., ϵn ≤ ϵtarget.

Proof Sketch. Our MILP-based mixed-precision tuning procedure guarantees soundness by
construction. We summarize the correctness argument for each of the three steps.

The first step employs sound interval arithmetic [139] to compute the integer bits of all
program variables and constants, including intermediate ones. This computation proves the
absence of overflow, ensuring that the resulting integer bits are valid and consistent.

The second step assigns the fractional bits of the dot and bias results as the solution of an
MILP optimization problem, which bounds the overall roundoff error to be below the user-given
error bound. The MILP error constraints soundly over-approximate the true roundoff errors
(by assuming worst-case errors and error propagation at each step), and the range constraints
ensure that no overflow is introduced due to roundoff errors. The linearization constraints are
exact and maintain the soundness of the MILP encoding.

The third and final step assigns precisions to the intermediate variables that store the sum
of products of the dot and the weight constants. This is achieved by utilizing the previously
determined sound integer bits from the first step and following the fixed-point sum of products
by constants (SOPC) algorithm. The correctness of the SOPC algorithm directly follows from
[28].

Together, these steps assign both the integer and the fractional bits of all variables, constants,
and operations such that no overflow occurs and the overall error bound is satisfied.

6.3 Implementation

Our tool, Aster, takes as input the network architecture and specification written in a small
domain-specific language. The input corresponding to our running example from Figure 6.1 is
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def runningExample(x:Vector): Vector = {

require(lowerBounds(x, List(-10, -5)) && upperBounds(x, List(10, 5)))

val weights1 = Matrix(List(List(0.1, 0.2), List(0.2, 0.15)))

val weights2 = Matrix(List(List(0.1, 0.2)))

val bias1 = Vector(List(1.0, 2.0))

val bias2 = Vector(List(0.5))

val layer1 = relu(weights1 * x + bias1)

val layer2 = linear(weights2 * layer1 + bias2)

layer2

} ensuring(res => res +/- 0.1)

Figure 6.4: Network architecture in Aster’s input format

shown in Figure 6.4. The ‘require’ clause specifies the input ranges, and the ‘ensuring’ clause
specifies the overall error bound. In addition, Aster takes the maximum fractional bit length of
the input vector, the word length of maximum weights, and the range of the fractional bits for
the optimization as command-line user inputs. As explained in Section 6.2.2, we need these
values to make the optimization problem linear.

Note that we have implemented Aster to handle feed-forward NNs with relu and linear

activations fully automatically; however, Aster can straightforwardly be extended to handle
NNs with sparse matrix multiplication and piece-wise linear activation functions with bounded
domains.

Aster generates fully quantized code, including (more) accurate precisions for the weights
written in C using the ap_fixed library. This code can directly be compiled for an FPGA with the
state-of-the-art HLS compiler by Xilinx [171]. Aster’s generated code either expresses the matrix
operations as for-loops or, alternatively, it can fully unroll these loops.

Integer Bit Computation We observed that a straightforward interval analysis computation
of the real-valued ranges quickly becomes expensive with the increasing complexity of the
network. We thus leverage the structure of the NN for a more efficient, though over-approximate
range analysis. Specifically, we abstract the input variables to each layer by a single range that
soundly covers all individual variables and do so similarly for the weights and biases at each
layer. In doing so, we can compute the output range of a layer by computing a single dot product
with one addition. This over-approximation makes the interval analysis scalable even for large
networks with thousands of parameters, while we have not observed it to significantly affect the
optimization results.

Choice of MILP Solver For our fixed-point precision optimization, the values we encounter
can be very small, e.g., for fixed 32-bit precision, the roundoff errors are on the order of 1e− 9.
State-of-the-art MILP solvers use finite precision internally as well, and it is thus crucial to choose
a solver that is precise enough to be able to distinguish its own internal roundoff errors from the
values in our constraints. In our work, we integrate Aster with the SCIP optimization Suite [79]
with the underlying SoPlex solver to solve our mixed-integer linear programming problem. SCIP
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internally uses extended precision, which goes beyond the limits of floating-point arithmetic
and thus allows us to deal with values as small as 1e− 15. We found that other widely-used
industrial solvers (such as CPLEX [101] and Gurobi [94]) have tolerances that are bounded by
1e− 6. These are, unfortunately, too coarse for our fixed-point precision optimization. Note that
SCIP’s precision is not unlimited, either. If the roundoff error goes beyond the tolerance limits
(that is 1e− 15), Aster cannot optimize and will report an error (i.e., it will not return an incorrect
result).

6.4 Experimental Evaluation

In this section, we conduct an extensive evaluation of Aster across three research aspects:

a) We investigate in Section 6.4.1 how different input parameters affect Aster’s results and
performance.

b) We compare Aster with the state-of-the-art in terms of implementation cost of NNs in
Section 6.4.2.

c) We compare the optimization time of Aster with the state-of-the-art techniques in Sec-
tion 6.4.3.

Benchmarks We have collected a set of 18 NN controllers, consisting of 15 models from the
competition at the Applied Verification for Continuous and Hybrid Systems (ARCH) workshop
from the years 2019 [131] and 2020 [111], where the networks were provided by academia as
well as industry. Additionally, we included 3 controller models from the VNN-LIB standard
benchmark set [90], which is widely used for the verification of NNs. Verification of these
controllers is becoming increasingly important due to their usage in safety and operational
critical systems. We took all benchmarks for which we could extract all values of weights and
biases from the repository. Table 5.1 provides details of the network architectures. We present a
brief description of the benchmarks here; a more detailed discussion can be found in [66, 111, 90].

Pendulum Controllers The InvPendulum, SinglePend, DoublePend benchmarks are NN con-
trollers for inverted pendulums with one, one, and two links respectively. We use two versions
of the double pendulum, V2 is more robust than the V1. The controller Acrobot (originally from
[106] where it was proposed as a benchmark for reinforcement learning) is also a two-linked
pendulum but with only the second joint actuated.

Car Controllers The Unicycle and MountainCar benchmarks model a car, where the first is
a stabilizing controller that controls a simple unicycle dynamics, and the latter models the
dynamics of a car placed between two mountains where the objective is to climb up a mountain
on the right. They are originally taken from [68] and [106] respectively. We also have 4 different
versions of ACC, which models an adaptive cruise control system with 3, 5, 7, and 10 hidden
layers that automatically adjust and control the speed of a car considering other cars.



6.4 experimental evaluation 107

benchmarks # in # params architecture

InvPendulum 4 60 4 × 10 × 1

MountainCar 2 336 6 × 15 × 15 × 2

Acrobot 6 375 6 × 20 × 20 × 8

MPC 6 720 6 × 20 × 20 × 8

SinglePend 2 775 2 × 25 × 25 × 2

DoublePendV1 4 825 4 × 25 × 25 × 2

DoublePendV2 4 825 4 × 25 × 25 × 2

ACC3 5 980 5 × 20 × 20 × 20 × 1

ACC5 5 1,820 5 × 20 × 20 × 20 × 20 × 20 × 1

VCAS 3 1,940 3 × 20 × 20 × 20 × 20 × 20 × 9

ACC7 5 2,660 5 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 1

AC6 12 3,457 12 × 64 × 32 × 16 × 1

Unicycle 4 3,500 4× 500 × 2

ACC10 5 3,920 5 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 × 1

AC7 12 12,033 12 × 128 × 64 × 32 × 1

Airplane 12 13,540 12 × 100 × 100 × 20 × 6

ControllerTora 4 20,800 4 × 100 × 100 × 100 × 1

AC8 12 44,545 12 × 256 × 128 × 64 × 1

Table 6.2: Details of benchmark architectures, listing the number of inputs and parameters
(considering both weight and bias parameters) as well as the neurons in each layer

Quadrotor controller The MPC benchmark models a six-dimensional control-affine quadrotor
and was also introduced in [106]. We use a modified version of the controller with only ReLU
and linear activation functions taken from [66].

Rotational Actuator Controller The controllerTora benchmark is an NN controller that
controls translational oscillations by a rotational actuator first utilized in [67].

Airplane Controllers The Airplane models a simple dynamical system of a flying airplane.
We also use a network, the VCAS, that models the closed-loop aircraft collision avoidance system
ACAS X. The network is originally from [112].

Drone Controllers The AC benchmarks are derived from a baseline case study involving the
problem of Drone control [90] using reinforcement learning. The controllers regulate a single
RPM value across all motors to facilitate takeoff and maintain a fixed hovering position. We
have extracted the three largest networks (6, 7, 8) in terms of number of parameters.

We have extracted the safe input ranges, the weight matrices, and bias vectors of these
controllers from the competition’s repository [66, 9], as well as the VNN-LIB repository [90]. The
provided MATLAB files, hierarchical data format (HDF) files, and open format for ML models
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(ONNX) files were converted into the input format of Aster. The networks do not come with
specified target error bounds, so we choose two target absolute error bounds uniformly for all
networks, 1e− 3 and 1e− 5, that we believe to be in a reasonable range for embedded controllers,
which are typically implemented in lower precision (16 bits or 32 bits).

Experimental Setup All experiments are done on an Intel Core i5 Debian system with 3.3 GHz
and 16 GB RAM. Aster uses SCIP Optimization Suite 7.0.3 as the external MILP solver. We set
1e− 15 as the zero and feasibility tolerance limits for the SCIP as these tolerances are precise
and efficient enough for our purpose. We further assume 32 as the initial guess for the word
length of the maximum weights to start the optimization. We choose to compare Aster with the
state-of-the-art precision tuner Daisy [54], as this is the only available sound mixed-precision
tuner for fixed-point programs. For the comparison, we use Daisy’s version downloaded on 2nd

March 2021 (there have been no major commits since). We set a 5-hour time budget for each
optimization run in our experiments. We believe that a total of 5 hours is a reasonable time for an
analysis to generate a sound implementation that can directly be synthesized on FPGAs. For the
synthesis of FPGA designs, we use Xilinx’s Vivado HLS tool [171] (version v2020.1) downloaded
on 27th May 2020, and set a timeout of 5 hours for our experiments.

6.4.1 Evalutation of Parameter Settings

Aster has several input parameters that are needed to make the MILP optimization tractable,
specifically the range of the fractional bits π and the input fractional bit lengths π0, which
determines the input error. These input parameters affect Aster’s results and optimization time.

settings π0 initial error π range

A 20 2−20 [5, 32]

B 32 2−32 [10, 32]

C 10 0 [5, 32]

D 17 0 [10, 32]

Table 6.3: Aster’s settings

We define 4 different settings that we denote with
letters ‘A-D’ as shown in Table 6.3. Setting A considers
a smaller value of π0, resulting in a larger input error
and a wider range of π compared to setting B. Setting
C and D do not consider initial errors but have different
ranges for π. These two settings are useful when the
user knows that the inputs are represented exactly and is
only interested in evaluating the roundoff error during
internal computations.

Choosing a wide range of π results in more variables
and constraints, thus making it harder for the underlying SCIP optimizer to generate results. π0

needs to be large enough to admit a valid solution to the optimization problem, but too large π0

will, in general, result in a—potentially unnecessarily—higher overall cost. Note that since Aster
computes an over-approximation of the error, the solver may report infeasibility even though a
solution to the not-approximated problem may exist.

We determine suitable parameters for our benchmarks with a systematic empirical exploration
using settings ‘A-D’ shown on the left in Table 6.4, considering the two error bounds 1e− 3 and
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benchmarks
target error = 1e− 3 target error = 1e− 5

A B C A B D

InvPendulum 20404 20404 20404 36886 34966 34006

MountainCar 151160 154934 163486 inf 207970 207970

Acrobot 175601 151103 157546 274887 248595 248595

MPC 250952 250952 250952 inf 250952 250952

SinglePend 271918 362100 263547 436565 438992 438992

DoublePendV1 352720 420640 408280 581144 540042 540042

DoublePendV2 442416 436810 453224 inf 508924 505722

ACC3 444638 442438 442438 inf 446838 446838

ACC5 inf 702228 702228 inf 702228 702228

VCAS inf inf inf inf inf inf

ACC7 inf inf inf inf inf inf

AC6 2069122 1986944 2009218 inf 2069122 2069122

Unicycle 1134062 1134062 1134062 1736074 1636072 1636072

ACC10 inf inf inf inf inf inf

AC7 inf 6660220 6660220 inf 6660220 6660220

Airplane inf 5967462 5967462 inf inf inf

ControllerTora 10562548 11605748 11632956 13532966 13532966 13532966

AC8 inf 21338216 21261416 inf 21338216 21338216

Table 6.4: Parameter evaluation of Aster’s with settings ‘A-D’, inf denotes infeasibility

1e− 5. Among settings A and B, setting B is expected to be made more benchmarks feasible due
to a smaller initial roundoff error, although it may potentially result in a higher cost. Settings C
and D set the input error to zero and thus may result in a lower cost.

Table 6.4 shows the overall cost of the precision assignment determined by Aster for these
4 different settings. Setting A is, in general, cost-effective with a larger error bound (1e− 3),
but results in infeasible error bounds for the larger networks. The reason for this is that the
bigger initial error gets magnified along with computing new errors at each layer, thus making it
impossible to achieve the target error bound. As expected, more benchmarks become feasible
with setting B. However, the tradeoff is that setting B mostly computes a larger cost as it considers
the largest initial fractional bit length.

Settings C and D are expected to compute the lowest cost, as the input variables in these
settings incur no error, along with smaller initial fractional bit lengths. This is indeed the case
for 9 and 13 of the benchmarks out of 18, with error bounds of 1e− 3 and 1e− 5, respectively.
For the rest of the benchmarks, settings C and D compute higher costs than settings A and B,
though the costs are mostly close to those of settings A or B. We have observed that for these
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benchmarks, the optimizer finds some specific assignment configurations that work optimally,
given the optimization problem. These assignments cost more in the end when we compute the
final costs of the whole program after assigning precision to all intermediate program variables
and constants. If the user already knows how many bits are required to represent the inputs
exactly, setting D is better, as Aster can take that into account.

The benchmarks VCAS, ACC7, ACC10 are infeasible with all the settings. Upon closer inspection,
we found that this is due to intermediate ranges becoming very large (on the order of 1e + 9).
For example, if we reduce the range of one of the input variables of the VCAS benchmark slightly
(from [-133, -129] to [-130, -129]), Aster’s setting B is able to generate a precision assignment
in 16.45 seconds for the target error bound of 1e− 3. That said since Aster cannot generate a
precision assignment for the original input ranges, we remove these benchmarks from the later
experiments.

We explore the generic settings A-D for our evaluation, but we expect that when using Aster
on a specific application, the user may either know suitable parameter values up front or may
run Aster several times to explore different options. The latter is feasible due to Aster’s small
optimization times (see Section 6.4.3).

We use settings A and B with error bounds 1e− 3 and 1e− 5, respectively, for our comparison
with the state-of-the-art in Section 6.4.2 except for ACC5, AC7, Airplane, and AC8. For these four
benchmarks, we will use setting B for both error bounds, as only with setting B could we generate
implementations. We do not include settings C and D as the state-of-the-art tuner does not
support analysis without initial errors.

6.4.2 Comparison with State-of-the-Art in terms of Implementation Costs

We compare Aster with the state-of-the-art precision tuner Daisy [54] that focuses explicitly
on optimizing the precision to satisfy given roundoff error bounds and generates mixed fixed-
precision implementations of arithmetic programs that are sound considering all possible
fixed-point precisions (not only, say, 4 or 8 bits). Note that dynamic quantization tools like
SeeDot [87] and Shiftry [120] are not sound and are designed specifically for NN classifiers and
do not handle feed-forward NN controllers that solve regression problems that we focus on in
this work.

Daisy only works on generic straight-line code without loops and, in particular, does not
handle programs with data structures like matrices and vectors that are standard in NNs. To use
Daisy on these programs, we completely unroll the loops and data structures, i.e., manually
assign individual matrix and vector elements to individual scalar variables.

We use Daisy’s following two modes for our purpose:

• Uniform: In this mode, Daisy computes the total error bound for a given fixed precision.
We determined the lowest uniform precision that satisfies the error bound by manually
employing Daisy repeatedly in this mode and checking if the computed error satisfies the
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given bound.

• Mixed-precision: This mode generates a mixed fixed-point precision assignment using
a heuristic search based on delta-debugging [54] that repeatedly evaluates the roundoff
errors for different precision assignments, starting from the lowest uniform precision that
satisfies the given error bound. However, the computational cost of this heuristic search
increases rapidly as the size of the NN grows.

Daisy generates the tuned fixed-point code as a C program in the same format as Aster that
can be directly compiled to an FPGA by the Xilinx compiler [171]. Just like the input, the output
code of Daisy is fully unrolled straight-line code and potentially very large.

We compare Aster’s setting A (fractional bits in the range [5, 32] and the input fractional bit
length = 20), setting B (fractional bits in the range [10, 32] and the input fractional bit length =
32), and Daisy with uniform and mixed-precision tuning with a maximum bit length of 32 bits
on all our benchmarks, considering the 1e− 3 and 1e− 5 error bounds. For uniform precision,
we use the lowest uniform precision that satisfies the error bounds. Note that we do not consider
settings C and D, as in those settings, we assume no initial error, which Daisy does not support.

Both Aster and Daisy share the common objective of minimizing the total number of bits
utilized by the NN. However, they employ entirely different techniques to achieve this goal.
Daisy employs a heuristic search method that involves multiple iterations of error analysis—one
for each candidate precision assignment. In contrast, Aster adopts a global optimization-based
approach: it creates a single optimization constraint and solves it for the precision assignment.
Although both tools employ cost functions for mixed precision tuning, these functions are similar
but not identical.

We cannot use Daisy’s cost function directly in Aster as it would lead to non-linear constraints.
Specifically, Aster uses assumptions (see Section 6.2.2) regarding the bit lengths of the NN
structures (matrices, vectors) and the inputs to maintain linearity. These assumptions make sense
when optimizing NNs, for example, to keep the data structures intact in the final implementation.
It is also not immediately possible to adapt Daisy to use Aster’s cost function. Daisy considers
the unrolled code as-is, optimizes each variable individually, and assigns precisions to all
variables in a program, including the inputs. Hence, Daisy only has the unrolled code available
while optimizing but would need the higher-level data structure information for Aster’s cost
function. Hence, a fair comparison of Daisy and Aster is impossible as their targeted and possible
optimizations differ.

Latency of FPGA Implementations Ultimately, what matters is the actual performance of the
generated mixed-precision code. Since Daisy has been used to optimize the latency of fixed-point
implementations on FPGAs [109], we compare the tools on that measure. We compile the code
generated by Aster and Daisy for a (standard) FPGA architecture using the Xilinx’ Vivado HLS
tool and compare the running time in terms of machine cycles, i.e., latency, that the compiler
reports for the final hardware implementation. (We cannot customize our cost function further
for the HLS compiler, as it is commercial and its internal implementation choices are unknown.)
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target error: 1e− 3 target error: 1e− 5

Daisy Daisybenchmarks

uniform mixed
Aster (setting A)

uniform mixed
Aster (setting B)

InvPendulum 12 12 12 14 14 13

MountainCar 27 27 25 28 29 25

Acrobot 24 24 25 24 25 26

MPC inf inf 35 inf inf 37

SinglePend 22 23 25 24 24 27

DoublePendV1 29 28 28 31 31 28

DoublePendV2 36 36 27 36 36 30

ACC3 49 49 44 inf inf 46

ACC5 inf inf 72# inf inf 74

AC6 62 62 48 inf inf 49

Unicycle 178 178 27 inf inf 28

AC7 TO TO 8310∗# inf inf 8310∗#

Airplane TO TO 9001∗# TO TO inf

ControllerTora TO TO 13158∗ TO TO 13558∗

AC8 TO TO ×∗# TO TO ×∗#

Table 6.5: Latencies of implementations generated by Daisy and Aster considering errors 1e− 3
and 1e− 5 respectively (TO: timed out after 5 hours, inf: tools returned infeasible, #: used Aster’s
setting B, *: compiled with explicit loops (i.e. not unrolled code)), ×: Xilinx failed to compile the
implementation

Note that this reported latency is exact, and we thus do not measure the noisy runtime on actual
hardware.

Table 6.5 shows the latencies of the generated code for our benchmarks considering the target
errors 1e− 3 and 1e− 5. It shows that Aster generates feasible implementations for significantly
more benchmarks and for benchmarks where both tools successfully generate compilable code,
Aster mostly produces code with lower latency than Daisy. Considering the latter benchmarks,
we see that Aster matches the performance of Daisy’s generated code for two benchmarks
and improves on it for 5 benchmarks. Only for two benchmarks, Aster’s code’s latencies are
(slightly) larger. Our results thus show that Aster’s optimization is often able to produce faster
implementations for NN controllers than the state-of-the-art heuristic mixed-precision tuner of
Daisy.

Compared with Daisy’s uniform precision assignments, we furthermore confirm that mixed
precision is indeed overall beneficial for platforms such as FPGAs. This is particularly striking
for the Unicycle benchmark, where Aster’s reduction in latency is almost 84% considering the
1e− 3 error as Aster is able to optimize some variables much more significantly than Daisy.
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The latency, considering the smaller error bound, is only slightly larger, whereas Daisy reports
infeasibility.

Our results also show that Aster is more scalable than Daisy, generating a precision assignment
for all benchmarks for the larger error bound (Daisy failing on 6), and reporting an infeasible
result for one benchmark with the smaller error bound (Daisy failing on 9). Owing to our
optimization problem formulation, the number of variables in the MILP grows linearly with the
number of layers: one decision variable for the dot product computation and the other for adding
bias. This formulation makes it possible for Aster to find a solution even for large networks.
In contrast, Daisy’s heuristic search becomes intractable with the increasing complexity of the
network, leading to many variables and constants. In addition, Daisy performs the error analysis
multiple times to ensure that the precision assignment meets the error requirement, thus timing
out often.

We run the Xilinx Vivado compiler on the fully unrolled code as we have observed that it
leads to smaller latencies (and Daisy generates fully unrolled code). The exceptions are the
AC7, Airplane, ControllerTora, and AC8 benchmarks (marked with a star in Table 6.5), where the
generated C code is too large to be compiled within the 5h timeout (∼ 36K, 40K, 62K, and 134K
lines of code). Aster can generate smaller programs (54, 58, 54, 54 lines of code) that preserve
the original NN structures and loops, and we use these implementations for compilation with
Xilinx. The benchmark AC8, however, is still too large in terms of the number of loop iterations to
be compiled by Xilinx within 5 hours without further customization. Nonetheless, in general,
our results show that considering the high-level structure of NNs is beneficial, especially for
larger networks.

Comparison of Cost Functions We also compare Daisy’s and Aster’s results using both cost
functions: we generate unrolled code by Aster to use Daisy’s cost function, and we use Aster’s
cost function to evaluate code generated by Daisy. Table 6.6 shows the cost reduction in %
achieved by Aster with respect to Daisy’s analyses. A negative result signifies that the cost of
Aster’s implementation is higher than Daisy’s.

Not surprisingly, our results show that Aster outperforms Daisy’s analyses considering
Aster’s cost function excluding both MountainCar and Acrobot with error bound of 1e− 3 and
only Acrobot with error bound of 1e− 5. However, with Daisy’s cost function, Daisy’s analyses,
both uniform and mixed, outperform Aster, where the cost is computed on the unrolled program,
with the exception of the Unicycle benchmark with 1e− 3 error bound and the SinglePend with
uniform precision analysis.

Aster’s cost function on Daisy’s implementation considers the largest bit lengths, one for
weights and the other for bias in a layer, to compute a sound cost. This defeats Daisy’s advantage
of optimizing all variables, thus resulting in higher costs than Aster. Likewise, using Daisy’s
cost function for Aster’s implementation is also suboptimal for Aster as it considers the same
bit length in a layer for linearity and to keep NN structures intact, thus improving scalability.
We thus conclude that Daisy and Aster are each better for their intended use cases. Upon
closer inspection of Aster’s and Daisy’s generated precisions, we further observed that Aster’s
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benchmarks
target error: 1e− 3, setting: A target error: 1e− 5, setting: B

Daisy’s cost Aster’s cost Daisy’s cost Aster’s cost

u (%) m (%) u (%) m (%) u (%) m (%) u (%) m (%)

InvPendulum -6.44 -13.97 15.99 17.80 -23.52 -37.31 17.08 13.45

MountainCar -43.14 -52.47 -2.64 -0.02 -19.68 -31.47 14.18 17.84

Acrobot -25.70 -37.30 -21.84 -34.12 -6.10 -19.93 -8.21 -2.12

MPC * * * * * * * *

SinglePend 1.89 -11.12 11.95 2.58 0.96 -2.57 10.81 10.69

DoublePendV1 -16.36 -24.33 6.00 3.61 -14.12 -16.11 5.01 10.01

DoublePendV2 -32.61 -40.95 0.92 6.22 -40.71 -47.05 24.56 24.38

ACC3 -62.01 -65.50 38.37 19.35 * * * *

ACC5 inf inf inf inf * * * *

AC6 -66.95 -64.96 18.13 17.45 * * * *

Unicycle 24.10 9.50 48.15 39.20 * * * *

AC7 × × × × * * * *

Airplane inf inf inf inf inf inf inf inf

ControllerTora × × × × × × × ×
AC8 × × × × × × × ×

Table 6.6: Reduction (%) in cost using Aster’s settings A and B w.r.t. Daisy’s uniform (u) and
mixed (m) analyses considering 1e− 3 and 1e− 5 error bounds using Daisy’s and Aster’s cost
functions (×: Daisy times out after 5 hours, *: Daisy returns infeasible but Aster generates an
implementation, inf: Aster returns infeasible)

assignment of precisions in the dot product is sometimes overly and unnecessarily conservative
and can be improved in the future. That said, as we have seen in Table 6.5, unrolled code
can become impractical for hardware implementations of large NNs. In these cases, Aster’s
optimization and cost function are better suited, with which Aster performs significantly better
than Daisy.

6.4.3 Comparison with State-of-the-Art in terms of Running Time

We compare the optimization time of Daisy’s uniform and mixed-precision tuning with Aster’s
setting A for the target error of 1e− 3 and Aster’s setting B for the target error of 1e− 5. For
Daisy’s uniform precision, we only show the time to run the roundoff error analysis once after
we find the lowest uniform precision satisfying the error bound using Daisy’s mixed precision
analysis (we could not find a better way to generate this information). Also, Aster generates
infeasibility with setting A for the ACC5, AC7, Airplane, and AC8 benchmarks with target error
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benchmarks
error: 1e− 3 error: 1e− 5

Daisy (unif) Daisy (mix) Aster (A) Daisy (unif) Daisy (mix) Aster (B)

InvPendulum 1.72 4.19 1.66 1.70 5.42 1.62

MountainCar 5.16 43.68 2.22 5.11 38.79 2.15

Acrobot 6.25 196.93 2.31 6.04 95.41 2.24

MPC - - 3.50 - - 3.44

SinglePend 17.63 237.83 3.52 17.23 115.25 3.53

DoublePendV1 19.42 127.96 3.69 19.69 201.13 3.84

DoublePendV2 20.55 246.64 3.80 20.66 334.03 3.72

ACC3 27.13 292.05 7.28 - - 4.84

ACC5 - - 12.97# - - 12.85

AC6 311.37 2033.23 51.01 - - 51.04

Unicycle 354.71 9980.65 49.92 - - 45.78

AC7 3999.54∗ TO 727.40# - - 729.05

Airplane 906.93∗ TO 1060.92# TO TO -

ControllerTora 12128.83∗ TO 2875.95 TO TO 2521.21

AC8 TO TO 13771.43# TO TO 13794.66

Table 6.7: Optimization time (in seconds) averaged over 3 runs; TO: timed out after 5 hours, *:
used 32 bit uniform precision analysis, #: used Aster’s setting B instead of A, -: returns infeasible)

1e− 3, we show the running time with setting B. Table 6.7 shows the end-to-end optimization
time measured by the bash time command of Daisy and Aster in seconds averaged over 3 runs.

In general, running uniform precision roundoff analysis once is quick for smaller benchmarks,
but with the increased size of the network, it also becomes slower and even times out after
5 hours for the largest benchmark AC8 with both target error bounds. The running times are
substantial even though Daisy assigns a uniform given bit length because it still needs to run
the error analysis to ensure overflow freedom and appropriately assign integer bits. Daisy’s
mixed-precision tuning is usually a magnitude slower than the uniform precision analysis.

Aster outperforms Daisy’s analyses substantially in terms of running time for both error
bounds for almost all benchmarks with the exception of Airplane, where running Daisy’s uniform
analysis once is the fastest.

With setting B, Aster uses a smaller range of fractional bits ([10, 32]). Hence, the number of
constraints in this setting is less than in setting A, resulting in a smaller running time in general.

Due to our formalization of the optimization problem, the number of constraints and variables
only depends linearly on the number of layers and the range of fractional bits (π) for Aster’s
settings. Solving an MILP problem with a limited number of variables is very efficient. The
Airplane, ControllerTora, and AC8 are the largest benchmarks with the most number of variables
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and constraints. For these MILP problems, where a solution is feasible (except AC8 with setting
A and Airplane in both settings), it was found in a maximum of 0.15 seconds. Our experiments
thus confirm that constraint optimization is not a bottleneck of our mixed precision tuning and
it is indeed a viable solution for fixed-point computation, even for large networks with many
parameters.

6.5 Conclusion

This work introduces a novel sound quantization approach that assigns fixed-point mixed
precision to NNs for regression tasks, guaranteeing a user-provided roundoff error bound. By
formulating the precision optimization problem as an MILP problem and incorporating efficient
over-approximations, we are able to solve it effectively and efficiently using a state-of-the-art
solver. Our experiments demonstrate that our method is fast, even for large networks with
thousands of parameters. This efficiency indicates that constraint optimization is not a bottleneck
here. Our proposed technique is suitable for quantizing NNs that appear as verified embedded
controllers. It is able to handle more and larger benchmarks than existing fixed-point tuners and
mostly generates more efficient code for custom hardware such as FPGAs. While our focus has
been on regression models for NN controllers, there is potential to extend Aster’s applicability
to quantizing classifiers with further exploration to bridge the gap between numerical and
classification accuracy.



7Related Work

We have reviewed essential techniques for analyzing and optimizing finite-precision
programs and the tool Daisy [55] in the background section (chapter 2) that form
the basis of our proposed approaches. In this section, we present a selection of other

methods, some with similar objectives and others with differing goals compared to ours, which
we consider complementary to our work.

7.1 Finite Precision Analysis

Analyzing finite-precision programs involves analyzing accuracy, handling exceptions, and
identifying bugs. We categorize the finite-precision analyses into static and dynamic techniques
and provide a concise overview of the current state-of-the-art techniques in both categories.

7.1.1 Static Analysis

Accuracy Analysis As outlined in chapter 2, there are two primary types of static analyses for
computing the accuracy of finite precision programs: those based on data-flow analysis and
those based on global optimization. These tools compute the roundoff error in the output and
are capable of proving the absence of large roundoff errors (cancellations).

In our work, we have leveraged the data-flow based roundoff error analysis techniques
implemented in Daisy [55]. This decision was motivated by several factors. Daisy is open-source,
it supports both floating-point and fixed-point computations, and it incorporates error refinement
features such as interval subdivision and the use of an SMT solver. Moreover, it offers the
potential for seamless integration with state-of-the-art data-flow-based probabilistic analysis, as
demonstrated in chapters 3 and 4. While not directly relevant to our work, it is worth noting
that proof certificates for Daisy’s error bounds can be generated and validated by tools like
FloVer [20].

In the subsequent part, we present a concise overview of alternative tools to Daisy that
employ data-flow analysis and tools that employ optimization-based techniques.

• Other Data-Flow based Approaches – The tools Gappa [60], Fluctuat [64], and Rosa [53] utilize
data-flow based analysis for computing the worst-case roundoff errors, and in principle,
could have been used for our purpose.

Gappa employs interval arithmetic to reason about properties about ranges and errors

117
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and provides a checkable proof from source code. Fluctuat utilizes zonotopes, a higher-
dimensional affine representation (similar to Daisy’s affine arithmetic), for both range and
error analysis. To further refine error bounds, it employs techniques like range subdivision
and Taylor expansion for unary non-linear operations. Rosa’s analysis is similar to Daisy’s,
employing interval arithmetic for range computations and affine arithmetic for error
estimations. Additionally, similar to Daisy, it supports interval subdivision and utilizes an
SMT solver to systematically tighten error bounds.

These tools primarily target multivariate straight-line code, often using a specialized syntax.
However, some extend their capabilities further. For instance, both Fluctuat and Rosa
provide support for conditional branches by computing the rounding errors of each branch
and the errors arising from diverging executions between the ‘if’ and ‘else’ branches.
Additionally, Fluctuat can handle loops by employing techniques like loop unrolling,
widening, or a combination of both. However, loop unrolling requires the number of loop
iterations to be known beforehand, and widening often returns highly over-approximated
error bounds. Rosa, on the other hand, offers a method to bound rounding errors in
specific types of bounded loops, although it requires prior knowledge of invariants for
ranges of variables.

A recent addition to this domain is DS2L [105], which builds on the foundation of Daisy.
DS2L extends Daisy’s capabilities to support complex list-like data structures, such as
matrices and vectors, typically written in a functional programming style.

• Global Optimization based Approaches – In addition to data-flow based techniques, there exist
optimization-based techniques. Tools like FPTaylor [161], real2Float [132], PRECiSA [140],
and Satire [56] fall into this category. All these tools formulate roundoff errors for
floating-point programs as maximization objectives and solve the problem using different
techniques. They, too, aim to compute only the worst-case errors and mostly focus on
simple straight-line floating-point programs.

The tool FPTaylor introduces symbolic Taylor’s expansions for the objective. It employs
branch-and-bound techniques to maximize the objective and, finally, computes a sound
bound on higher-order terms through the use of interval arithmetic. Similar to FPTaylor,
Satire leverages symbolic Taylor terms for computing precise error bounds but adopts an
incremental abstraction of numerical expressions, thus scaling better for large straight-line
programs. The tool, Real2Float, also relies on symbolic Taylor expansion to create the
maximization objective but employs a semi-definite programming optimization technique
to solve the problem.

Alternatively, PRECiSA employs a symbolic expression to represent the error, followed
by the application of a branch-and-bound solver to precisely quantify the error. It also
provides support for computing errors due to divergent executions between ’if’ and ’else’
branches, along with evaluating errors for individual branches.



7.1 finite precision analysis 119

None of these tools are tailored to effectively handle large non-functional programs in
languages like C and C++, which involve complex data and program structures like arrays,
structures, branching, loops, and function calls that we address in our work in chapter 5.

In contrast to our work presented in chapters 3 and 4, which incorporates the probability
distribution of inputs to provide a more nuanced and realistic analysis of control flow and
roundoff errors, all these tools focus on computing worst-case errors, and consequently, provide
too pessimistic results to be useful in the scenarios we considered.

There exists a constraint-based approach [44], which heuristically generates test cases
where floating-point and real-valued results deviate, especially when there are discrepancies in
control flow [180]. This methodology complements our approach for computing wrong path
probabilities. When our technique computes an exceptionally high probability, this method of
generating test cases can be useful for debugging purposes.

There exist a few techniques that focus on computing probability bounds on errors. Daumas
et al. [58] compute bounds on the probability that accumulated floating-point roundoff errors
exceed a given threshold, using known inequalities on sums of probability distributions and
distributions on the individual errors. This approach requires manual proofs and, unlike our
techniques, does not consider input distributions.

The tool Chisel [137] considers and bounds the probability of errors occurring due to
approximate hardware and is thus, in spirit, similar to our probabilistic error analysis approach
presented in chapter 4. Chisel, however, only tracks the probability of a large error occurring,
whereas our approach provides a more precise probability distribution and furthermore tracks
the variable ranges probabilistically as well.

Following the publication of our tool PrAn for sound probabilistic roundoff error analysis
(chapter 4), a subsequent effort has been made to compute sound probabilistic errors for floating-
point programs. The tool PAF [45] focuses on soundly bounding the output distributions of
floating-point programs and providing an over-approximation on roundoff errors, conditioned
on the computation falling within an interval that encapsulates most, if not all, outputs.

PAF builds upon a technique similar to the one used in PrAn [11] but improves it by
incorporating an SMT solver for reasoning about variable dependencies. It effectively removes
regions from the state space with zero probability, resulting in more precise error bounds.
However, it is important to note that the SMT solver highly influences the runtime of this tool, as
it requires solver calls after each operation to determine these dependencies. Hence, the runtime
is often larger than PrAn, as demonstrated in the paper.

Exception Analysis The static accuracy analysis tools are capable of proving the absence
of special values (NaN and infinity) by computing an abstraction of the possible behaviors.
However, as previously noted, their scalability is rather constrained when applied to real-world
applications.

Scalable static analysis techniques have been developed for larger floating-point programs.
Abstract interpretation-based methods are particularly suitable for verifying the absence of special
values in these contexts. For example, Apron [110] offers a library of numerical abstract domains
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that maintain soundness concerning floating-point arithmetic. This includes domains like
polyhedra [37] and octagon [134], which, while more precise than the interval domain, are
also notably more computationally intensive. ELINA [160] provides performance-optimized
implementations of numerous numerical abstract domains. However, its polyhedra domain
lacks support for floating-point arithmetic.

In our two-phase analysis, presented in chapter 5, we opted for the abstract interpretation-
based tool Astrée [135]. This choice stems from its status as an industrial-strength, scalable tool
that accommodates a wide spectrum of both C and, since November 2020, C++ programs 1.
However, these methods are expensive and incur high over-approximations without manual
annotations.

In the space of deductive verification, substantial progress has been made in incorporating
support for floating-point operations. The Why3 deductive verification framework [72] with
front-ends for C and Ada programming languages through Frama-C [48] and SPARK [78]
respectively and the Boogie intermediate verification language [125] support floating-point
operations. These verifiers allow users to annotate floating-point programs with pre and
post-conditions. From these annotations, verification conditions are automatically generated
and then discharged with automated SMT solvers like Z3 [63].

A more recent work [10] added floating-point support to the KeY deductive verifier for Java
programs that specifically focuses on proving the absence of the special values and compares
multiple SMT solvers (Z3, CVC4 [17] and MathSAT [42]) with floating-point support. These
methods could have been used for our purpose to verify the absence of special floating-point
values like NaN and infinity; however, they require manual efforts for annotations, and the
floating-point point support of SMT solvers is still quite limited.

In the domain of bounded model checking (BMC) [25] based on SAT and SMT theories, the typical
approach involves performing a bit-precise translation of an input program, usually annotated
with assertions and loops unrolled to a specified depth, into a formula whose satisfiability is
then checked using SAT and SMT solvers. The BMC tools that handle floating-point programs
are CBMC [119] and JBMC [47]. CBMC is tailored for checking C and C++ programs, while
JBMC is specialized for the verification of Java bytecode. In theory, these tools can detect the
presence of, or prove the absence of, special floating-point values up to a bounded program
depth. However, it may be noted that these tools do not scale for large floating-point programs
due to the inherent complexity of the arithmetic.

Other Probabilistic Analyses Our proposed probabilistic analysis technique is based on the
propagation of uncertain probability distributions, using probabilistic affine arithmetic, following
the work presented in [11]. This probabilistic affine arithmetic has also been extended by
incorporating concentration of measure inequalities [31] to reduce the over-approximations.
Furthermore, to reduce the combinatorial explosion of the size of the representation (e.g., number
of focal elements), polynomial approximations of non-linear distributions based on polynomial

1It is worth noting that for our experiments, we leveraged Astrée for C programs, and our work was submitted
prior to the release featuring C++ support.
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arithmetic have also been proposed [157]. These methods have been used for tracking real-valued
ranges in a program (but not errors). That said, these methods could potentially be used to
improve the accuracy and reduce overapproximations of our approach.

In a broader context, the work by Sankaranarayanan et al. [156] explores the verification
of probabilistic properties in programs with numerous paths by examining a finite subset. A
combination of symbolic execution and volume computation provides bounds on the probability
of the property holding. This work only considers linear programs and does not consider the
effects of finite precision while handling more general programs and properties.

In chapter 3, we compared our proposed probabilistic analysis with an exact symbolic
probabilistic inference technique [82]. This approach was used to generate the distribution of the
output. However, we found that this inference method is not scalable for higher-order numerical
programs. Since then, there have been a few advancements in this domain. For instance, the
tool λPSI [83] is now capable of handling higher-order probabilistic programs with continuous
distributions. It would be interesting to evaluate this tool’s applicability for our purpose.
Another recent tool, SPPL [150], translates probabilistic programs into symbolic sum-product
expressions, effectively representing the joint distribution over all program variables. This
allows for precise solutions to probabilistic inference queries. However, this tool is unsuitable
for programs involving multivariate numeric transformations with real coefficients.

7.1.2 Dynamic Analysis

In contrast to sound analysis tools, dynamic analysis tools involve the execution of programs.
Consequently, they are better suited for handling large programs with complex program and
data structures. Within this category, various techniques and tools are available for floating-
point programs to detect errors using fuzzing techniques, performing shadow executions, and
sampling for probabilistic estimates. In the following section, we provide a concise overview of
these techniques relevant to the work presented in this thesis. It is worth noting that, due to
the fundamental nature of dynamic analysis, these tools only detect the presence of bugs in the
executions observed and do not provide guarantees for all inputs.

Fuzzing One of the simplest yet effective fuzzing techniques is Blackbox fuzzing, which randomly
generates (fuzzes) inputs without considering the internal program structure. This technique has
been explored in the context of floating-point programs to find large roundoff errors by searching
through the input space, guided either by heuristics like binary guided random testing [38] or
through a genetic search algorithm [181]. Unfortunately, these tools are still limited to small
floating-point programs and thus are not applicable for finding special floating-point values in
large programs. Also, due to the inherent nature of blackbox fuzzing, they may not be able to
find corner cases or paths in a reasonable time.

Guided greybox fuzzing presents an improvement over blackbox fuzzing by employing
lightweight runtime monitoring, which enables the distinction of different program paths. It
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also accesses the program’s internal structure for coverage calculation. This method proved to
be more effective in error detection than blackbox fuzzing, even though it might be somewhat
less efficient in input generation.

In our work presented in chapter 5, we have utilized the guided greybox fuzzing tool
AFLGo [27] to guide the program execution towards specific program locations where floating-
point special values (NaN and infinity) may arise. Apart from AFLGo, there is a wide range of
other targeted greybox fuzzers, such as those targeting specified program locations [36], rare
branches [126], unexplored branches [127, 172], or potential vulnerabilities [80, 96, 18, 128].

The most effective (but expensive) technique is whitebox fuzzing, which utilizes the complete
structures of programs, employing either concolic execution [84] or symbolic execution [16, 129,
91] to detect errors.

In the context of finding floating-point bugs, tools like KLEE-Float [129], FPGen [91], and
Ariadne [16] exist that use symbolic execution techniques. These tools are capable of identifying
issues in floating-point code, including overflows, large precision loss, and cancellation. KLEE-
Float relies on floating-point SMT decision procedures, while Ariadne approximates the path
constraints and uses the real-valued theory. FPGen introduces specialized inaccuracy checks to
detect cancellations.

Additionally, white-box fuzzing has also been used for detecting overflows [77] and large
roundoff errors [182] by phrasing the search as a mathematical optimization problem and by
adapting the notion of condition numbers, respectively. Unfortunately, all these tools have been
designed for relatively small programs and do not scale for real-world programs.

Shadow Execution Another compelling technique for detecting numerical errors involves
shadow execution with high-precision computation [23, 22, 155, 40]. These techniques execute a
program with a specific floating-point precision in parallel with a shadow execution in high
precision, often using arbitrary precision arithmetic, to represent ideal real-valued execution.
Here, each floating-point value is shadowed by a corresponding high-precision value, which
is then compared with the original at various points of execution to detect errors. These tools
instrument both during compilation [40] and in already compiled binaries [22, 155].

The tool FPDebug [22] has been shown to scale beyond small programs and detect cancellation
and roundoff errors. In addition to cancellation, the tool PFPSanitizer [40] can also detect branch
divergence and special floating-point values efficiently by executing shadow instructions marked
by the user in parallel. It may be noted that shadow executions in high precision may incur
high performance overhead. Once a cancellation has been identified, the tool Herbgrind [155]
can help to locate its root cause, which may be in a different instruction than where the error
becomes significant. Herbgrind is complementary to our work presented in chapter 4 and may
additionally be used to locate the root causes of potential cancellation errors reported.

Probabilistic Approaches In addition to exact symbolic analysis, there exist sampling-based
approaches for probabilistic inference. While they may not offer guaranteed bounds, they are
known for their efficiency. We provide a brief overview of these approaches here, as we view
them as complementary to our probabilistic analysis techniques.
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The tool R2 combines MCMC sampling with program analysis to enhance efficiency [142].
Stan’s Hamiltonian sampling can generate samples from high-probability regions [35]. Infer.NET
implements various algorithms, including expectation and belief propagation, as well as Gibbs
sampling [136]. It achieves efficiency by compiling graphical models into executable code.
MAYHAP [154] statically constructs a distribution from a probabilistic program, which simplifies
the Bayesian network before evaluating it through sampling.

7.2 Optimization of Finite-Precision

Optimizing the precision of finite-precision programs is crucial for improving accuracy, efficiency,
or striking a balance between both. Various techniques have been developed for optimizing
finite-precision programs. In this thesis, we specialize optimization for efficiently quantizing
neural networks. Hence, this section provides a brief overview of numerical optimization and a
discussion of the state-of-the-art quantization techniques for neural networks.

7.2.1 Numerical Optimization

Expression Rewriting In our work (chapter 5), we employed Daisy’s expression rewriting
technique [54] to reduce error bounds in numerical expressions. Daisy leverages a genetic
search-based approach to systematically and soundly rewrite expressions, resulting in a notable
reduction of error ranging from 3.3% to 33.3% in our context. Another static analysis tool,
Salsa [50], adopts Sardana [103] internally for expression rewriting using abstract equivalence
graphs.

Apart from sound analysis techniques, tools like Herbie [144], AutoRNP [177], and the tool
by Wang et al. [173] focus on repairing numerical programs. They propose to generate partitions
(regimes) of the input domain, detect an input subdomain that triggers high floating-point errors
using dynamic analysis techniques, and then apply rewrites in order to repair high rounding
errors. For rewriting, Herbie employs a greedy hill-climbing search guided by a dynamic error
evaluation function, while other tools derive approximations with more specialized rewrite
rules. It is worth noting that none of these tools completely preserve real-valued semantics.

In addition to the fully automated approaches, a recent tool, Odyssey [138], has introduced
an interactive mode. This feature allows users to identify particularly problematic inputs with
dynamic analysis, adjust input domains in real-time, and fine-tune the optimized expressions.
This work is complementary to our fully automated approach.

Mixed-Precision Tuning For sound mixed precision tuning, there are tools available, such as
FPTuner [39], Salsa [49], and Daisy [54]. FPTuner specializes in tuning floating-point arithmetic
by solving a nonlinear interval-valued optimization problem. However, this continuous
optimization approach is not applicable to fixed-point arithmetic due to its non-dynamic range.
Alternatively, Salsa uses a combination of backward static analysis and SMT solving for mixed-
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precision tuning of floating-point programs. Only Daisy can handle both floating-point and
fixed-point arithmetic by employing an iterative search based on delta debugging. However,
we have shown in our work ( chapter 6) that the iterative search becomes intractable with the
increased size of the program.

Other iterative approaches have also been explored for mixed-precision tuning for fixed-point
arithmetic, for example, Min+1 or Max-1 [33], and a combination of Bayesian optimization
and Min+1 [95]. Iterative approaches have been proposed to overcome difficulties in phrasing
and, more importantly, solve sound global optimization problems. Alternatives are relaxing
the integer to real-valued optimization [73], but these methods only work for Digital signal
processors (DSPs). Generally, these techniques treat errors as uncorrelated and additive or
evaluate them dynamically with simulation and thus do not guarantee soundness. A more
recent tool, POP [12], finds mixed-precision assignments for floating-point arithmetic code by
phrasing the problem as an ILP problem. POP uses dynamic analysis to infer variable ranges
and thus also does not guarantee complete soundness.

Combined Techniques Some tools employ combined techniques for optimization. For example,
Daisy [54] and Pherbie [151], built on top of Herbie, combine expression rewriting and mixed
precision tuning. Daisy first rewrites the input expression into one that is equivalent but accurate
under reals. It then follows up with mixed-precision tuning to generate code in mixed precision.
Pherbie, on the other hand, interleaves accuracy optimization with precision tuning, resulting in
improved running time. Like Herbie, Pherbie also does not completely preserve real-valued
semantics. However, both these tools are applicable to both floating- and fixed-point arithmetic.

An attempt to combine sound and unsound optimizers Daisy and Herbie has been made in
[19]. In this context, Daisy serves as a backend for validating Herbie’s optimizations. This work
also uncovered some limitations of both tools.

A recent tool, REGINA [148], partitions the input domain and systematically optimizes each
part using established sound mixed-precision tuning or rewriting optimization routines. This
approach effectively improves either the performance or accuracy, depending on the specific
optimization, for floating-point programs.

While we primarily used rewriting to enhance the accuracy of numerical kernels in chapter 5,
a combined technique could potentially offer further improvements.

Custom Operations There have been several other efforts to build custom operators for sums
of products by constants with an accuracy requirement. For instance, the work of Dinechin et al.
[61] presents an approach that permits to use of only a necessary amount of bits for intermediate
products based on worst-case error analysis, and we have leveraged it in our ILP-based mixed
fixed-precision tuner, Aster, as discussed in chapter 6.

Another noteworthy technique involves a multiplier-less approach where constant multipli-
cations are performed using bit shifts and additions. Intermediate terms are also shared when
several constants are multiplied [121], thus reducing the overall cost of the implemented hard-
ware. A more recent work [81] presents an ILP-based solution for sound truncated multipliers,
which takes as input the result’s format and minimizes the number of full adders in the final
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implementation. Our technique for neural network quantization (chapter 6) could potentially
also benefit from this approach by further reducing costs, but the scalability might be a concern
for word lengths beyond 16 bits.

7.2.2 Neural Network Quantization

We have tailored mixed fixed-point optimization for neural networks in chapter 6, which is
typically called quantization in this domain. Quantization is a widely employed technique to
reduce latencies and memory footprints. It involves converting high-precision floating-point
weights, biases, and network activations into more cost-effective, low-precision operations.

While there have been numerous prior works on neural network quantization, most of these
techniques have been applied to neural network classifiers in non-safety-critical contexts. They
are based on dynamic analysis techniques and thus do not offer any accuracy guarantees. We
provide a brief overview of these approaches here. However, it is important to note that they are
fundamentally different from sound quantization for regression problems that we address.

The state-of-the-art quantization techniques typically focus on selecting a particular uniform
(custom) floating-point [118, 147] or fixed-point precision [93, 130, 87] and showing empirically
that it performs well on a particular data/benchmark set. For mixed-precision quantization,
several approaches have emerged.

Particularly, there exists a technique [104] that performs mixed-precision tuning for interpo-
lator networks. It uses dynamic range analysis and formulates the tuning as an ILP problem.
However, it is limited to floating-point arithmetic. The tool Shiftry [120] specializes in mixed
fixed-point quantization, which aligns closely with our work. It employs an automated process
to iteratively decrease the precision of variables in recurrent neural networks, transitioning from
16 to 8 bits, and to dynamically compare classification accuracy with the original model. This
enables the quantized models to run efficiently on memory-constrained hardware. Another
approach to mixed-precision is to dynamically adapt to outliers, i.e., particularly large values, in
inputs or weights by providing specialized hardware architectures [146, 159, 163].

For efficient implementations of neural networks, alternative number representations have
also been considered. These include stochastic computing [70] for convolutional neural networks
and posits [34] for deep neural networks. Additionally, tunable floating-point (TFP) precision
has been explored, which allows for adjustments in the exponent and mantissa widths. These
techniques either aim to minimize power consumption while maintaining acceptable accuracy
during both the training and inference phases of deep neural networks [76] or to maximize
dynamic range at network layers during inference phase [165].

In our work, we have analyzed the generated neural network implementation using the
standard High-Level Synthesis (HLS) tool Xilinx [171]. For the most refined FPGA-based dot
products, it is possible to substitute Xilinx with specialized hardware code generators like the
FloPoCo tool [59]. This tool can optimize the implementation of mathematical operators tailored
to a particular FPGA design, generating VHDL code.





8Conclusion

Finite-precision programs are widespread, especially in safety-critical systems with con-
strained resources. Thus, analyzing and improving the accuracy of these programs
while ensuring optimal resource utilization is crucial. Various techniques exist for sound

analysis and optimization for finite-precision programs. However, they have traditionally
focused on worst-case analysis, mostly in the context of straight-line code with limited support
for conditionals and loops.

Throughout this thesis, we have presented our work on extending these analyses to consider
input uncertainties and improving the scalability of both the analysis and optimization techniques.
Below, we present our concluding remarks.

Remark 1: When extending the state-of-the-art data-flow-based probabilistic analyses in the
context of finite-precision program executions and errors, we have observed significant
overapproximations in the resultant distributions. To this end, techniques like pruning
irrelevant input domains using an SMT solver or subdividing intervals into subintervals
can be effective, but at the expense of increased runtime. Additionally, refining granularity,
such as increasing discretizations, improves accuracy but also raises the complexity of the
analyses. Therefore, striking a balance between accuracy and complexity is important for
effectively utilizing the analyses.

Remark 2: Scaling finite-precision analyses to large programs is a challenging task. Fortunately,
one analysis for the whole program with sophisticated finite-precision reasoning may
not always be necessary. Typically, the numerically intensive parts (kernels) are small
but concealed in large programs. Therefore, a more focused technique can be employed
that analyzes only the kernels precisely and employs numerically imprecise but scalable
techniques for the entire program, thus increasing scalability.

Remark 3: Instead of generic numerical analysis and optimization, specializing these techniques
within specific application contexts can be highly beneficial. For instance, neural network
controllers involving operations with matrices, vectors, and loops over data structures
can be soundly quantized using static optimization-based methods with linearization and
abstractions. We implemented these techniques to generate fixed-point mixed-precision
NN codes that are guaranteed to satisfy user-provided error bounds and customized for
specific hardware, such as FPGAs.

In summary, our work expands the horizons of state-of-the-art finite-precision analysis and
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optimization, making them more suitable for practical scenarios. Nevertheless, there remains
substantial work ahead.

Future Work In the domain of static analysis, we focused on probabilistic analysis of small
numerical programs written in functional-style syntax and scaling up worst-case analysis for
larger non-functional programs. As a natural next step, it would be imperative to explore
methods to scale up probabilistic analysis in the context of larger non-functional programs. This
step may require finding a balance between the accuracy and efficiency of the analysis.

Scaling up analyses and optimization for large programs poses significant challenges. In
this thesis, we explored one direction to increase scalability through a combination of static
and dynamic analyses. Exploring further combinations for analysis and optimization, such as
integrating machine learning techniques with static analysis, where machine learning guides
static analysis for a more focused approach, holds promise for further improvements in scalability
and applicability.

We have specialized our optimization efforts in the field of neural network quantization.
Further specialization in other domains, such as precision-aware control implementations in
noisy environments, is a promising direction. Additionally, adopting more realistic models of
resource costs specific to the application domain can help finely tune programs in the context of
applications and the targeted hardware.

Moreover, optimizing based on worst-case roundoff errors can be excessively pessimistic, as
errors do not consistently reach their worst-case magnitude. Furthermore, applications may
be robust to some bounded noise in their execution. Consequently, introducing probabilistic
analysis into the optimization process can be an exciting avenue, potentially enabling more
aggressive optimization for specific program segments and, thus, enhancing overall resource
utilization.

Finally, there exists substantial potential to expand numerical analysis and optimization
in the context of heterogeneous high-performance computing (HPC) systems, integrating
GPUs. Our work only focused on single-threaded numerical programs executed on CPUs with
accessible source code. However, modern HPC systems introduce a whole new set of unique
challenges, ranging from diverse number formats and the absence of exception status registers
to limited access to source code and the prevalence of highly mixed precision options [86].
While recent efforts have been made towards detecting floating-point exceptions in GPU-based
systems [123, 122], there remains significant work ahead to effectively verify, test, and optimize
numerical programs running on these platforms.

In this thesis, we took a step forward toward analyzing and optimizing applications with
realistic specifications, highlighting some potential future directions. Yet, the journey to
practicality stretches far beyond, with many unexplored avenues ahead!
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