Karlsruhe Institute of Technology

Analyzing
-Floating-Point Programs

Debasmita Lohar

Formal Systems Il: Applications, Summer 2025

1

IN this Part

you will learn the fundamentals of analyzing floating-point programs™:

» Challenges

» Basics of Floating-Point Arithmetic

277.06.

» Dataflow analysis

More on Dataflow Analysis
 Pro’s and con’s of Intervals

« Affine Arithmetic (AA)

* Analysis of roundoff errors with AA

Today

 [|nterval Subdivision

 Other Approaches and Recent Directions

e Demo: Daisy

*Slides are based on Program Analysis Course (WS 20/21) at UdS + RPTU 2

Pro's and con's of Intervals

Pro's:

* Conceptually simple (important for correctness)

e [ast efficient machine-independent implementation
e Several successful applications

Con's:

e (Can be imprecise: not relational, i.e. cannot track correlations between

variables
x = [-1, 2] Z 1min
X - xXx=1-1, 2] - [-1l, 2] o=

= [-3, 3]
= [0, O]

In a chained computation intervals can become too wide to be useful!

Affine Arithmetic (AA)

* Improves over intervals in that it tracks linear correlations

* Represents each range as a linear (affine) form:

n
X = x0+2xl-€l- e € [—1,1]
i=1

= Xo is the central value
= Xi€j are noise terms, tracking deviation from Xo
= ¢; are symbolic variables, tracking correlations

* The range represented by an affine form:
HESEEDWETREE WA
i=1 i=1

* AA tracks linear correlations: X = xq + x;€;
X—X=xy+x1€ — (x5 +x1€) = x5 — Xy + x76; —x16g =0

Affine Arithmetic: concepts and applications, L. H. De Fiqueiredo, J. Stolfi, Numerical Algorithms’04
4

Quiz ZZ”“”

n
X = x0+2xi€i e € [—1,1]
i=1

What is the affine form corresponding to the following interval®?

x =[2, 10]

a) b) C)

<>
1
@)\
+
N
0
<>
1
N\
+
o0
0
<>
1

0 + 8¢,

AA Arithmetic Operations

e Addition, subtraction, unary minus are linear and can thus be
computed exactly:

n n
2:5(\'+5\7=X()+ in€i+y0+ Zini
i=1 i=1

ZO —_ xO + yO Ziei — (xi + yl-)€l-

* Multiplication is nonlinear:

n n
2=89= (ot Y xe) Go+ D, vie)
i=1 i=1

n n n n
= (% Y0) + (-) yiE) + o D, xe) + (D X+ D vie)
=1 i=1 i=1 i=1

= (X - Yo) + Z (XpY; + YoXy)e; + Z | %l €1

i=1 1<i,j<n \
over-approximation!

AA Arithmetic Operations

* Unary operations (sqgrt, inverse, log, exp, etc.):
= compute linear approximation

2min

Quiz

<]

What is the result of the following computation?

X =342 +4e, y=1+ le, + Se;

N
1
<>
I
<>
1

4\ D
1

2 + 2e; + 3¢,

v

b)
2=2+2€1+3€2_5€3

Roundoff Analysis with AA

For arithmetic operations: eval(x ® y)
4 rea|-Va|Ued raﬂge. Xrange @ yrange

» error. propagatedError + newRoundoffError

Recall the roundoff error analysis

Roundoff Analysis with AA

For arithmetic operations: eval(x ® y)

» real-valued range: Xrange © Vrange

» error. propagatedError + newRoundoffError

To improve the precision, we have several options to replace I1A with AA:

Option 1: AA for ranges and errors
= operations over AA use AA rules

= error propagation remains the same

10

Roundoff Analysis with AA

For arithmetic operations: eval(x ® y)

» real-valued range: Xrange © Vrange

» error. propagatedError + newRoundoffError

To improve the precision, we have several options to replace I1A with AA:

Option 1: AA for ranges and errors
= operations over AA use AA rules

= error propagation remains the same

Option 2: AA for ranges and IA for errors
= operations over AA use AA rules

= error propagation remains nearly the same
= need to cast AA into an interval

11

Roundoff Analysis with AA

For arithmetic operations: eval(x ® y)

» real-valued range: Xrange © Vrange

» error. propagatedError + newRoundoffError

To improve the precision, we have several options to replace I1A with AA:

Option 1: AA for ranges and errors
= operations over AA use AA rules

= error propagation remains the same

Option 2: AA for ranges and |A for errors
= operations over AA use AA rules

= error propagation remains nearly the same
= need to cast AA into an interval

Option 3: IA for ranges and AA for errors
= operations over AA use AA rules

= error propagation remains nearly the same
= need to cast an interval into an AA

12

Different Kinds of Approximations

Affine arithmetic is not universally better than interval arithmetic.

They commit different kinds of (over-)approximations:
= interval arithmetic looses correlations (x - x # 0)
= affine arithmetic over-approximates nonlinear operations

* AA over-approximation can be larger than due to interval's loss of correlations
* AA gives best possible result for linear programs

* AA over-approximation is smaller when input intervals are smaller
v Daisy uses AA by default to track errors, and intervals to track ranges

13

Interval Subdivision

IS an additional technigque to reduce over-approximations
= standard technique in numerical analysis

|dea:

e gplit input intervals into smaller subintervals

e form cartesian product to get all possible subdomains
e run analysis on each subdomain

e worst-case error is the overall maximum

14

Interval Subdivision

Example:
x = [-10, 10], y = [0, 5]

Splitting each input domain into 4:
= [-5, @], x3 = [0, 5], xa = [5, 10]
= [1.25, 2.5], ys = [2.5, 3.75],

X1

)41
Va

-10, -5.
0, 1.25.

3.75, 5.

’

’

X2
) @

Run analysis on each subdomain:
(x1, y1), (x1, y2),

(x1, y3),

(x1, y4), (X2, y1), ...

15

Alternative Roundoff Error Analysis

Recall the absolute error:

~

max | f(z) — f(Z)]

rxecl

This is fundamentally an optimization problem
= suggest an alternative static analysis based on global optimization

Problem:
= f is highly discontinuous and complex
= formulation as-is cannot be handled by optimization tools

|dea:
= approximate f using floating-point abstraction (x o,y =(xey) - (14+6))
= simplify formula further using first-order Taylor approximation

Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions, A. Solovyey, C. Jacobsen, Z. Rakamaric,
G. Gopalakrishnan, FM'15

16

Recent Research
Directions

Probabillistic Error Analysis

The worst-case analysis may be too pessimistic!
Vfor applications that may tolerate large infrequent errors.

Probabilistic Analysis of Errors:

= considers probability distribution of x
= propagates the distribution through the program using probabilistic AA

X:=Xy+) Xxg€ c e [—1,1]

i=1
N}ise symbol propagates discretized distributions

d,:<lay,bl,wy >, <la,b,lw,>

set of <interval, weight>

= combined with interval subdivisions

Sound Probabilistic Numerical Error Analysis, D. Lohar, M. Prokop, E. Darulova, iFM'19
18

Rewriting Optimization

If the accuracy is still not acceptable:
= |ncrease precision and check again >
= rewrite equations, check accuracy

Examples: -
mathematical identities
a + (b + c) »(a + b) + C
a *x (b + ¢) »(a x b) + (a *x c)

Finding an optimal order is computationally infeasible!
= Daisy uses a genetic (heuristic) search to find better expressions

e tournament selection of an expression based on fitness
e randomly mutate
e evaluate fitness of the new ones

Sound Mixed Precision Optimization with Rewriting, E. Darulova, E. Horn, S. Sharma, ICCPS’18
19

Mixed-Precision Tuning

Assigning one precision to all variables may be suboptimal:

= Optimize precision to increase performance

minimize: precision and static cost

subject to: €, < €rarget

= Daisy uses a delta debugging search to find the optimal precision

64 bits
A 4
------ ’ -
cost{function 32 bits
32 bits/ \64 bits 64 bits 32 bits

Sound Mixed Precision Optimization with Rewriting, E. Darulova, E. Horn, S. Sharma, ICCPS’18
20

L Imitations

Static analyses compute sound worst-case and probabilistic roundoff errors,
and support rewriting and mixed-precision tuning.

But, they have limitations in:

» scalabllity for large programs
e (any) scalable analysis + static analysis®

» efficiency for high-precision analysis

» fine-grained optimizations
 tailor to application contexts™

*A Two-Phase Approach for Conditional Floating-Point Verification, D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis, TACAS’21
**Sound Mixed Fixed-Point Quantization of Neural Networks”, D. Lohar, C. Jeangoudoux, A. Volkova, E. Darulova, EMSOFT’23
**Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision, S. Teuber, D. Lohar, B. Beckert, FMCAD’25

21

Demo g'“%m‘”

Installation:

— sudo docker pull dlohar/daisy
— sudo docker run -it dlohar/daisy

float—analysis—-class/Test.scala:

import daisy.lang._
import Real._
object Test {
def test(x: Real, y: Real): Real = {
require(l <= x & x <= 3 & -5 <=y & y <= 4)

val z = X k Yy + X + Yy + 2%XkX
Z
} ensuring (res => res +/- le-5)

}

Daisy - Framework for Analysis and Optimization of Numerical Programs,
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18
22

Demo ZN‘*”"“” g“%

Running Daisy:

— sbt script

— ./daisy float—analysis—class/Test.scala
—rangeMethod=affine —errorMethod=affine
—precision=Float32

23

DemO g ~35min

Running Daisy:

— ./daisy float—-analysis—class/Test.scala
—rangeMethod=affine —errorMethod=affine
—precision=Float32 —subdiv —divLimit=10

— for sulbdivision Z3 is needed which is currently not installed!

24

DemO g ~35min

Running Daisy:

- ./daisy float—analysis—-class/Test.scala
—precision=Float32 —rewrite

- ./daisy float—analysis—-class/Test.scala
—precision=Float32 —mixed-tuning —codegen

25

Demo g'“%m‘”

Exercise 1

* Find the lowest uniform precision that guarantees the error bound.
« Which range and error analysis method works better?

- (Can you optimize more to improve accuracy/efficiency”?

« Generate an optimized code (scala, apfixed)

import daisy.lang._
import Real._
object Test {
def test(x: Real, y: Real): Real = {
require(l <= x & x <= 3 & -5 <=y & y <= 4)

val z = X k Yy + X + Yy + 2%XkX
i
} ensuring (res => res +/- 1.4e-14)

}

20

