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‣ Challenges 

‣ Basics of Floating-Point Arithmetic 

‣ Datafl
• Interval Arithmetic (IA) 
• Floating-Point IA 
• Analysis of roundoff errors with IA 
• Demo: Daisy
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In this Part
you will learn the fundamentals of analyzing floating-point programs*:

To
da

y

   More on Dataflow Analysis

• Pro’s and con’s of Intervals 
• Affine Arithmetic (AA) 
• Analysis of roundoff errors with AA 
• Interval Subdivision 
• Other Approaches and Recent Directions 
• Demo: Daisy

*Slides are based on Program Analysis Course (WS 20/21) at UdS + RPTU
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Pro's and con's of Intervals

3

Pro's:

• Conceptually simple (important for correctness) 
• Fast efficient machine-independent implementation 
• Several successful applications

Con's:

• Can be imprecise: not relational, i.e. cannot track correlations between 

variables

x = [-1, 2]

x - x = [-1, 2] - [-1, 2]
1min

= [-3, 3]

≠ [0, 0]

In a chained computation intervals can become too wide to be useful!



Affine Arithmetic (AA)
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• Improves over intervals in that it tracks linear correlations

̂x := x0 +
n

∑
i=1

xiϵi ϵ ∈ [−1,1]

• Represents each range as a linear (affine) form:

➡ x0 is the central value 
➡ xi𝜖i are noise terms, tracking deviation from x0  
➡ 𝜖i are symbolic variables, tracking correlations

• The range represented by an affine form:

[ ̂x] = [ x0 −
n

∑
i=1

|xi | , x0 +
n

∑
i=1

|xi | ]

̂x − ̂x = x0 + x1ϵ1 − (x0 + x1ϵ1) = x0 − x0 + x1ϵ1 − x1ϵ1 = 0

• AA tracks linear correlations: ̂x = x0 + x1ϵ1

Affine Arithmetic: concepts and applications, L. H. De Fiqueiredo, J. Stolfi, Numerical Algorithms’04



Quiz
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What is the affine form corresponding to the following interval?

2min

a) b) c)

̂x := x0 +
n

∑
i=1

xiϵi ϵ ∈ [−1,1]

x = [2, 10]

̂x = 6 + 4ϵ1 ̂x = 2 + 8ϵ1 ̂x = 6 + 8ϵ1



AA Arithmetic Operations
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• Addition, subtraction, unary minus are linear and can thus be 
computed exactly:

̂z = ̂x + ̂y = x0 +
n

∑
i=1

xiϵi + y0 +
n

∑
i=1

yiϵi

z0 = x0 + y0 ziϵi = (xi + yi)ϵi

• Multiplication is nonlinear:

̂z = ̂x ⋅ ̂y = (x0 +
n

∑
i=1

xiϵi) ⋅ (y0 +
n

∑
i=1

yiϵi)

= (x0 ⋅ y0) + (x0 ⋅
n

∑
i=1

yiϵi) + (y0 ⋅
n

∑
i=1

xiϵi) + (
n

∑
i=1

xiϵi ⋅
n

∑
i=1

yiϵi)

= (x0 ⋅ y0) +
n

∑
i=1

(x0yi + y0xi)ϵi + ∑
1≤i, j≤n

|xiyj |ϵn+1

over-approximation!



AA Arithmetic Operations
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• Unary operations (sqrt, inverse, log, exp, etc.): 
➡ compute linear approximation 2.3. Affine Arithmetic

ba

!
 " x + !

#

v

(a) Chebyshev

ba

!

 " x + !

#

(b) Min-range

Figure 2.1 – Linear approximations of the inverse function

can involve quite complex computations which are all committing internal round-off errors.
On large input intervals, like the ones considered in [51, 52], these are (probably) not very
significant. However, when keeping track of round-off errors, our library deals with intervals
on the order of machine epsilon. In particular, the computation of v introduces roundoff
errors, but because it lies between [a,b] it is not clear whether it should be rounded up or down
for soundness. In fact, when we used rounding to nearest, which is closest to the true point,
Chebyshev approximations kept returning unexpected and wrong results. We thus concluded
that min-range is the better choice. As discussed in [52], the Chebyshev approximation would
be the more accurate choice in long running computations, however we simply found it to
be too numerically unstable for our purpose. To our knowledge, this problem has not been
acknowledged before.

Error estimation for nonlinear library functions like log,exp,cos, etc. requires specialized
rounding, because the returned results are correct to 1 ulp only for the standard Java/Scala
math library [88], and hence are less accurate than arithmetic operations, which are correct to
within 1/2 ulp. The directed rounding procedure is thus adapted in this case to produce larger
error bounds to make it is possible to analyze code with the usual Scala mathematical library
functions without modifications.

Soft Policy to Avoid Too Many False Warnings

Our solution follows the ‘soft’ policy advocated in [51], whereby slight domain breaches for
functions that work only on restricted domains are attributed to the inaccuracy of our over-
approximations and are ignored. For example, with a ‘hard’ policy computing the square
root of [°1,4] results in a run-time error, as the square root function is not defined on all of
the input interval. It is possible, however, that the true interval (in a real semantics) is [0,4]
and the domain problem is just a result of a previous over-approximation. In order to not
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Quiz
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What is the result of the following computation?

2min

̂x = 3 + 2ϵ1 + 4ϵ2 ̂y = 1 + 1ϵ2 + 5ϵ3

̂z = ̂x − ̂y =

a)

b)

c)

̂z = 2 + 2ϵ1 + 3ϵ2 − 5ϵ3

̂z = 2 + 2ϵ1 + 3ϵ2̂z = 2 + 3ϵ2



Roundoff Analysis with AA
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Recall the roundoff error analysis

For arithmetic operations: eval(x ⊚ y) 
‣ real-valued range:   xrange ⊚ yrange 
‣ error: propagatedError + newRoundoffError  



Roundoff Analysis with AA
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Option 1: AA for ranges and errors

To improve the precision, we have several options to replace IA with AA:

For arithmetic operations: eval(x ⊚ y) 
‣ real-valued range:   xrange ⊚ yrange 
‣ error: propagatedError + newRoundoffError  

➡ operations over AA use AA rules 
➡ error propagation remains the same



Roundoff Analysis with AA
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Option 2: AA for ranges and IA for errors
➡ operations over AA use AA rules 
➡ error propagation remains nearly the same 

➡ need to cast AA into an interval

To improve the precision, we have several options to replace IA with AA:

For arithmetic operations: eval(x ⊚ y) 
‣ real-valued range:   xrange ⊚ yrange 
‣ error: propagatedError + newRoundoffError  

Option 1: AA for ranges and errors
➡ operations over AA use AA rules 
➡ error propagation remains the same



Roundoff Analysis with AA
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Option 3: IA for ranges and AA for errors
➡ operations over AA use AA rules 
➡ error propagation remains nearly the same 

➡ need to cast an interval into an AA

Option 2: AA for ranges and IA for errors
➡ operations over AA use AA rules 
➡ error propagation remains nearly the same 

➡ need to cast AA into an interval

Option 1: AA for ranges and errors
➡ operations over AA use AA rules 
➡ error propagation remains the same

To improve the precision, we have several options to replace IA with AA:

For arithmetic operations: eval(x ⊚ y) 
‣ real-valued range:   xrange ⊚ yrange 
‣ error: propagatedError + newRoundoffError  



Different Kinds of Approximations
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Affine arithmetic is not universally better than interval arithmetic.

They commit different kinds of (over-)approximations: 
➡ interval arithmetic looses correlations (x - x ≠ 0) 
➡ affine arithmetic over-approximates nonlinear operations

• AA over-approximation can be larger than due to interval's loss of correlations

• AA over-approximation is smaller when input intervals are smaller 
✓ Daisy uses AA by default to track errors, and intervals to track ranges

• AA gives best possible result for linear programs



Interval Subdivision
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is an additional technique to reduce over-approximations 
➡ standard technique in numerical analysis

Idea:

• split input intervals into smaller subintervals 
• form cartesian product to get all possible subdomains 
• run analysis on each subdomain 
• worst-case error is the overall maximum



Interval Subdivision
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Example:
x = [-10, 10], y = [0, 5]

Splitting each input domain into 4: 
x1 = [-10, -5], x2 = [-5, 0], x3 = [0, 5], x4 = [5, 10] 
y1 = [0, 1.25], y2 = [1.25, 2.5], y3 = [2.5, 3.75],  
y4 = [3.75, 5]

Run analysis on each subdomain: 
(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x2, y1), ...



Alternative Roundoff Error Analysis
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max
x2I

|f(x)� f̃(x̃)|
Recall the absolute error:

This is fundamentally an optimization problem 
➡ suggest an alternative static analysis based on global optimization

Problem:

➡      is highly discontinuous and complex 
➡ formulation as-is cannot be handled by optimization tools

f̃

Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions, A. Solovyev, C. Jacobsen, Z. Rakamaric, 
G. Gopalakrishnan, FM'15

Idea:

➡ approximate     using floating-point abstraction (                                  ) 
➡ simplify formula further using first-order Taylor approximation

f̃ x ∘fp y = (x ∘ y) ⋅ (1 + δ)



Recent Research 
Directions
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Probabilistic Error Analysis
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The worst-case analysis may be too pessimistic!

Probabilistic Analysis of Errors:

Sound Probabilistic Numerical Error Analysis, D. Lohar, M. Prokop, E. Darulova, iFM'19

➡ considers probability distribution of x 
➡ propagates the distribution through the program using probabilistic AA

̂x := x0 +
n

∑
i=1

xiϵi ϵ ∈ [−1,1]

noise symbol propagates discretized distributions

dx :< [a1, b1], w1 > , ⋯ < [an, bn], wn >
set of <interval, weight>

for applications that may tolerate large infrequent errors.

➡ combined with interval subdivisions



Rewriting Optimization
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If the accuracy is still not acceptable:
➡ increase precision and check again
➡ rewrite equations, check accuracy

Examples:

a + (b + c)            (a + b) + c 
a * (b + c)            (a * b) + (a * c)

mathematical identities

Finding an optimal order is computationally infeasible!
➡ Daisy uses a genetic (heuristic) search to find better expressions

Sound Mixed Precision Optimization with Rewriting, E. Darulova, E. Horn, S. Sharma, ICCPS’18

• tournament selection of an expression based on fitness 
• randomly mutate 
• evaluate fitness of the new ones 



Mixed-Precision Tuning
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➡ Optimize precision to increase performance

minimize: precision and static cost 
subject to: ϵn ≤ ϵtarget

Assigning one precision to all variables may be suboptimal:

Sound Mixed Precision Optimization with Rewriting, E. Darulova, E. Horn, S. Sharma, ICCPS’18

➡ Daisy uses a delta debugging search to find the optimal precision

64 bits

32 bits

32 bits32 bits 64 bits64 bits

cost function

…



Limitations
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Static analyses compute sound worst-case and probabilistic roundoff errors, 
and support rewriting and mixed-precision tuning.

‣ efficiency for high-precision analysis

But, they have limitations in: 
‣ scalability for large programs 

• (any) scalable analysis + static analysis*

*A Two-Phase Approach for Conditional Floating-Point Verification, D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis, TACAS’21

‣ fine-grained optimizations 
• tailor to application contexts**

**Sound Mixed Fixed-Point Quantization of Neural Networks”, D. Lohar, C. Jeangoudoux, A. Volkova, E. Darulova, EMSOFT’23 
**Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision, S. Teuber, D. Lohar, B. Beckert, FMCAD’25



Demo
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- sudo docker pull dlohar/daisy 
- sudo docker run -it dlohar/daisy

~35min

Installation:

import daisy.lang._ 
import Real._ 
object Test { 
  def test(x: Real, y: Real): Real = { 
    require(1 <= x && x <= 3 && -5 <= y && y <= 4) 

    val z = x * y + x + y + 2*x*x 
    z 
  } ensuring (res => res +/- 1e-5) 
}

 float-analysis-class/Test.scala:

Daisy - Framework for Analysis and Optimization of Numerical Programs, 
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18



Demo
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~35min

Running Daisy:

- sbt script 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=affine —-errorMethod=affine 
   —-precision=Float32



Demo
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~35min

Running Daisy:

- sbt script 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=affine —-errorMethod=affine 
   —-precision=Float32 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=affine —-errorMethod=affine 
   —-precision=Float32 —-subdiv -—divLimit=10 

— for subdivision Z3 is needed which is currently not installed! 



Demo
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~35min

Running Daisy:

- sbt script 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=affine —-errorMethod=affine 
   —-precision=Float32 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=affine —-errorMethod=affine 
   —-precision=Float32 —-subdiv -—divLimit=10 

- ./daisy float-analysis-class/Test.scala  
   —-precision=Float32 —-rewrite  
- ./daisy float-analysis-class/Test.scala  
   —-precision=Float32 —-mixed-tuning —-codegen



Demo
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~35min

Exercise 1 
• Find the lowest uniform precision that guarantees the error bound. 
• Which range and error analysis method works better? 
• Can you optimize more to improve accuracy/efficiency? 
• Generate an optimized code (scala, apfixed)

import daisy.lang._ 
import Real._ 
object Test { 
  def test(x: Real, y: Real): Real = { 
    require(1 <= x && x <= 3 && -5 <= y && y <= 4) 

    val z = x * y + x + y + 2*x*x 
    z 
  } ensuring (res => res +/- 1.4e-14) 
}


