Karlsruhe Institute of Technology

Analyzing
-Floating-Point Programs

Debasmita Lohar

Formal Systems Il: Applications, Summer 2025

1

IN this Part

you will learn the fundamentals of analyzing floating-point programs™:

» Challenges

Basics of Floating-Point Arithmetic

27.06.

» Dataflow analysis

e Interval Arithmetic (IA)
 Floating-Point IA
 Analysis of roundoff errors with |A

e Demo: Daisy

More on Dataflow Analysis
 Pro’s and con’s of Intervals

* Affine Arithmetic (AA)

 Analysis of roundoff errors with AA

01.07.

 |nterval Subdivision

e Other Approaches and Recent Directions

e Demo: Daisy

*Slides are based on Program Analysis Course (WS 20/21) at UdS + RPTU 2

Motivation

Models of the physical world, control algorithms, etc:

4

Real-valued Arithmetic

Computer implementations:

>

Finite Precision: e.g. Floating-Point Arithmetic

R: 0.1 + 0.1 + 0.1 = 0.3

Try it in any programming language!

2min

X

Motivation

* Models of the physical world, control algorithms, etc:

» Real-valued Arithmetic

 Computer implementations:

» Finite Precision: e.g. Floating-Point Arithmetic

R: 0.1 + 0.1 + 0.1 = 0.3

F: 0.1 + 0.1 + 0.1 = 0.30000000000000004

Xavier Leroy and many, many others:

“It makes us nervous to fly an airplane since we know they
OPERATE using floating-point arithmetic.”

Verified squared: does critical software deserve verified tools? Talk at POPL, 2011.

4

Accumulated Errors (a.k.a the Patriot bug)

float t = 0.0; while(l) { ... £t =t * 0.1; ... }

10% [' '

| |
"patriot.out”
1% | T
+
0.1% i T -
+
0.01% | ' -
+
0.001% | T t + |
§ + +
o exact + + ++ + + -
(O]
2 N ;
® -0.001% |- ; i 1
+
0.01% | H + .
+
+
-0.1% | i . -
1% | HE
10% | .
| | | |
1min 1h 1day 1week

time
Consequence: 28 casualties

Source: Verified squared: does critical software deserve verified tools? X. Leroy, talk at POPL, 2011,
5

Basics: Floating-Point Arithmetic

defined by IEEE 754 standard*

Representation:

(=1) - m - 2¢

e base 2 (base 10 also possible)
e s € {0,1}:sign

e m : significand

e e . exponent

precision sign m bits e bits
single (32) 1 23 8
double (64) 1 52 11
quad (128) 1 112 15

*IEEE 754-2008 standard, August 2008, available at https://ieeexplore.ieee.org/document/4610935.
6

Basics: Floating-Point Arithmetic

defined by IEEE 754 standard
Representation: (— 1)S -m - €

precision sign mbits e bits e bias
single (32) 1 23 8 127

double (64) 1 52 11 1023
quad (128) 1 112 15 16383

floating-point formats in biased representation

What is the decimal number in single precision? s

0(01111111({10000000000000000000000 szin

sign exponent significand

1
— (_1)() . (1 + E) i 2127—127
= 1.5

Basics: Floating-Point Arithmetic

precision sign mbits e bits e bias
S é single (32) 1 23 8 127
(_ 1) o { 2 double (64) 1 52 11 1023
quad (128) 1 112 15 16383
Limited precision — need to round every operation

Arithmetic operations (+, -, *, /, /) are accurately rounded, i.e.
» as if computed in real arithmetic and then rounded

Rounding modes:
» round to nearest

» roundto O
» round to 4o
» round to -

Abstraction for round to nearest:

Xop,y=(xey)-(1+9) where [6| <€,

Special Values

precision sign mbits e bits e bias
S é single (32) 1 23 8 127
(_ 1) o { 2 double (64) 1 52 11 1023
quad (128) 1 112 15 16383
Limited range — overflow, underflow

Special values: +owo, -0, +0.0, -0.0, NaN (Not-a-Number)

1.0 / 0.0 — Infinity
1.0 / (-0.0) — -Infinity
sqrt(-42.0) — NaN
NaN * 0.0 — NaN

NaN == NaN — false

More unintuitive behavior

Floating-point arithmetic is commutative, but not associative and distributive
X+(Y+2)!=(X+y)+2
x*(y"z)l=(x"y) "z

X" (y+2)l=(x"y)+(x"2)

Further,
Xx/10!1=x*0.1

X==y=+1/x==1/y

X I=X

10

Overview

» Dataflow analysis
* [nterval Arithmetic (IA)

e Floating-Point IA

* Analysis of roundoff errors with |A

 Demo: Daisy

11

27.06.

Intervals: Basic Terms and Concepts

Each variable represents a closed interval
X = [11 3]1 Y T [-3, 4]

xCy

e x andy are intervals over Z:
x={lU,h]|Lh,,€ZU{—0},hy € ZU {+0}}
yi= 1Ml L <hLeZU{-x},hheZU{+x}}

o with ordering: [/, 1] € [l2, h2] iff L <liand hi <h:

Interval Arithmetic: From Principles to Implementation, T. Hickey, Q. Ju, M. H. Van Emden, JACM 2001
12

Intervals: Basic Terms and Concepts

Each variable represents a closed interval

X = [1I 3]1 Y T [-3, 4]

XFY

e xandy are intervals over Z:

y = {15, h,]

e with ordering: [/1, h1] € [12, h2]

| <h,li€eZU{-0},hj € ZU {+0}}
| L < hy,LbeZU{-0},h, € ZU {+0}}

ifft Lh<liand i <h

e [wo intervals x and y are equal if they are the same:

X =Y

if ll — 12, hl — h2

13

Intervals: Basic Terms and Concepts

Each variable represents a closed interval

X

= [11 3]1 Y = [_51 4]
[x[=3,ly]=5

x and y are intervals over Z:
x:={ll,h]|Lh,lj€ZU{-0},hy € ZU {+0}}
y =1l l b <hyl,e ZU{—00},hy € ZU {+0}}

with ordering: [/1, h1] € [b, h2] it L </liand h < h>

Two intervals x and y are equal if they are the same:

Absolute values of intervals:
| x| =max{ |;|,]h]}

|y|=max{|12|,|h2|}

14

Interval Arithmetic (1A)

Each variable represents a closed interval
X = [11 3]1 Y T [-3, 4]
add = x + y =[-4,7]

o Addition: x+y:= [l + Ly, hy + h,]

15

Interval Arithmetic (1A)

Each variable represents a closed interval
X = [11 3]1 Y T [-3, 4]

sub = X -y = [3, §]

e Addition:

e Subtraction: x—y :=1[l; — hy,hy — ;]

16

Interval Arithmetic (1A)

Each variable represents a closed interval
X = [11 3]1 Y T [-3, 4]

mul = x * y =[-15,12]

* Multiplication: x Xy := [min(([; X 1,), ([; X h,), (hy X 1,), (h; X h,)),
max((l; X 1), ([; X h,), (hy X 1,), (h; X hy))]

17

Interval Arithmetic (1A)

Each variable represents a closed interval
X = [11 3]1 Y T [-3, 4]
Oey
WDoss the denominator contain 07 undefined!

2. InZ, the results are computed by checking all combinations
div = x / y 3. Uses floor divisions for soundness!

e Addition:

 Division: x/y:=

18

Interval Arithmetic (1A)

Each variable represents a closed interval
x =11, 31, vy = [1, 4]

2. InZ, the results are computed by checking all combinations
div = x / y 3. Uses floor divisions for soundness!

e Division; x/y :=[min(a/b),max(al/b)],
where a € {l;,h},b € {L,,h,} and 0 & [I,, h,]

19

Interval Arithmetic (1A)

Each variable represents a closed interval
x =11, 31, vy = [1, 4]

div = x / y =10, 3]

e Division; x/y :=[min(a/b),max(al/b)],
where a € {l;,h},b € {L,,h,} and 0 & [I,, h,]

20

How Is |A useful for floats”?

Let's assume we want to develop an analysis which can prove that special
values +e0, -oo, NaN do not appear in a program execution.

inputs: x, y nputs: X,y //x,y € [a, b]

t=x+y //show O ¢ O[t]

w=1.0/(x + —
(Y) w=1.0/t

Z = sqQrt(w
qri(w) z = sgrt(w) // show d[w] non-negative

Note: we could do integer-valued interval analysis,
but it would lbe very imprecise

21

Floating-Point |A

Define the domain of intervals over F as:

[:'={[Lhl|lLhlelFhel]

with ordering: [/1,] C [, h2] iff b <hiand i < h

For soundness, arithmetic operations need to be rounded outwards:

- [l1, hi]
- [l1, hi]
- [l1, hi]
- [l1, hi]

®

S
®
%)

2, ha] -
2, ha] -
b2, ha] -

[, h]

N+ b, 1 h2]
11 -] h2, -1 [2]
min{/il2], Lih2], hil2], hiha|}, max{li127, [ihat, hil2], hihot}]

min{/i] X (I/h2)], L] x (I/12)], | x (I/h2)],] x (1/12)]},
max{/iT x (L/h2)1, 1} x (I/12)T, it x ({/h2)},] < (1/12)1}]

where | : rounded to -co and 1 : rounded to +oo

22

Roundoft Errors

Before: Analysis for showing absence of “runtime errors”:

iInputs: x, y
w=1.0/(x+y) // nodiv-by-zero

Zz = sqrt(w) // no sqrt of negative number

Next: Analysis for verifying the accuracy of a computation

v

» “assume no infinities, NaNs can be checked with interval analysis!

» compute worst-case roundoff errors: I.e. difference to real-valued execution
= needed e.qg. to check validity of controller stability

23

Accuracy

e Absolute Errors: max ‘f(l') - f({i)‘
/:CEI T \
Input spec real-valued program floating-point program

« Relative errors: max |f($) - f(x)|

vl [f(x)

Problem: if O e f(x), the expression is not well-defined
» focus on absolute errors

24

Intervals for Individual Executions

f(x) = X + 3.1"X*X

|dea:

Track individual executions with floating-point interval arithmetic
x=3.14 //[3.141, 3.141]

IN the end:
roundoff error < width of interval

+ Often used in numerical analysis

+ Easy to implement

- Only provides information about a single execution

25

Interval Analysis for Roundoffs

Goal: compute worst-case roundoff error estimate for a range of executions

z=evalx©y) [//Ixe€[-10,10],y € [-10,10]
\—

arithmetic expression

|dea: track ranges of variables and errors separately

» we need the ranges, because roundoff errors depend on them

step 1. Compute real-valued range:
step 2. Compute the errors: propagatedError + newRoundoffError

20

Error Propagation

For arithmetic operations: eval(x ® y)

4 rea|-Va|Ued I’aﬂge xVange @ yrange

> error: propagatedError + newRoundoffError

Error propagation depends on the arithmetic operation:

* Addition: X+y = (x+err)+(y+erry) =x+y+err, +err,
W

real value propagated error
* Subtraction: ¥—y=(x+err,)—(y+err)=x—y+err,—err

=

real value propagated error

27

Error Propagation

For arithmetic operations: eval(x ® y)

4 rea|-Va|Ued I’aﬂge xVange @ yrange

> error: propagatedError + newRoundoffError

Error propagation depends on the arithmetic operation:
* Multiplication:

XXy =((x+err)X(y+err) =xXy+xXerr,+yXerr,+err.Xerr,

real value propagated error

e Division: compute inverse and then multiplication

* Inverse and Square Root: compute linear approximation

28

New Roundoff Error

For arithmetic operations: eval(x ® y)

4 rea|-Va|Ued I’ange xrange @ yrange

> error: propagatedError + newRoundoffError

Recall floating-point abstraction (round to nearest):

Xopy=(xeoy)-(l+0) where [6| <€,

Xop,y=Xey+(xey) 0
-\ -

real value error

* New worst-case roundoff error: max |xoy| - €,
* X oYV hereincludes propagated errors
* €, depends on the floating-point precision

29

Quiz

What is the range for z after the operation”

x e ([1,2], [-0.1,0.1]), y » ([3, 4], [-0.3, 0.3])

a)

([3.6, 6.4], [-0.4, 0.4])

Z=X+Y

([4, 6],[-0.4,0.4] +[-0.4, 0.4]em)

30

C)

<]

2min

([4, 6], [-0.4,0.4] + [3.6, 6.4]em)

Quiz

What is the range for z after the operation”

x e ([1,2], [-0.1,0.1]), y » ([3, 4], [-0.3, 0.3])

a)

([3.6, 6.4], [-0.4, 0.4])

Z=X+Y

([4, 6],[-0.4,0.4] +[-0.4, 0.4]em)

31

C)

<]

2min

v

([4, 6], [-0.4,0.4] + [3.6, 6.4]em)

Demo g""“’m‘”

Prerequisite: Docker

e Ubuntu/Debian/Fedora/CentOS:
https://docs.docker.com/engine/install/

e MacOS:
https://docs.docker.com/desktop/setup/install/mac—-install/

e \Windows:
https://docs.docker.com/desktop/setup/install/windows—install/

Daisy - Framework for Analysis and Optimization of Numerical Programs,
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18
32

DemO X ~40min

Installation:

— sudo docker pull dlohar/daisy
— sudo docker run -it dlohar/daisy

float—analysis—-class/Test.scala:

import daisy.lang._
import Real._
object Test {
def test(x: Real, y: Real): Real = {
require(l <= x & x <= 3 & -5 <=y & y <= 4)

val add = x + vy
add
}

}

Daisy - Framework for Analysis and Optimization of Numerical Programs,
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18
33

Demo Z"“‘Om‘” g“’%

Running Daisy:

— sbt script

— ./daisy float—-analysis—class/Test.scala
—rangeMethod=1interval —errorMethod=1nterval
—precision=Float32

Try It with other precision, input ranges,
arithmetic operations, nolnitialErrors etc!

34

