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‣ Challenges 

‣ Basics of Floating-Point Arithmetic 

‣ Dataflow analysis  
• Interval Arithmetic (IA) 
• Floating-Point IA 
• Analysis of roundoff errors with IA 
• Demo: Daisy
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In this Part
you will learn the fundamentals of analyzing floating-point programs*:
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*Slides are based on Program Analysis Course (WS 20/21) at UdS + RPTU

   More on Dataflow Analysis 
• Pro’s and con’s of Intervals 
• Affine Arithmetic (AA) 
• Analysis of roundoff errors with AA 
• Interval Subdivision 
• Other Approaches and Recent Directions 
• Demo: Daisy



Motivation
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• Models of the physical world, control algorithms, etc: 
‣ Real-valued Arithmetic 

• Computer implementations: 
‣ Finite Precision: e.g. Floating-Point Arithmetic

ℝ: 0.1 + 0.1 + 0.1 = 0.3

Try it in any programming language!

2min



Motivation
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Xavier Leroy and many, many others: 
“It makes us nervous to fly an airplane since we know they  

OPERATE using floating-point arithmetic.” 
Verified squared: does critical software deserve verified tools? Talk at POPL, 2011. 

• Models of the physical world, control algorithms, etc: 
‣ Real-valued Arithmetic 

• Computer implementations: 
‣ Finite Precision: e.g. Floating-Point Arithmetic

ℝ: 0.1 + 0.1 + 0.1 = 0.3

𝔽: 0.1 + 0.1 + 0.1 = 0.30000000000000004



Accumulated Errors (a.k.a the Patriot bug)
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float t = 0.0; while(1) { ... t = t * 0.1; ... }

Source: Verified squared: does critical software deserve verified tools? X. Leroy, talk at POPL, 2011. 

Accumulated rounding errors (a.k.a. the Patriot bug)

float t = 0.0; while(1) { ... t = t + 0.1; ... }

-10%

-1%

-0.1%

-0.01%

-0.001%

exact

0.001%

0.01%

0.1%

1%

10%

1min 1h 1day 1week

re
la

tiv
e

 e
rr

o
r

time

"patriot.out"

(C. Marché)

X. Leroy (INRIA) Verified squared POPL 2011 42 / 50

Consequence: 28 casualties



Basics: Floating-Point Arithmetic
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defined by IEEE 754 standard*

• base 2 (base 10 also possible) 
• s ∈ {0,1} : sign 
• m : significand 
• e : exponent 

(−1)s ⋅ m ⋅ 2eRepresentation:

precision sign 
bit

m bits e bits e bias
single (32) 1 23 8 127
double (64) 1 52 11 1023
quad (128) 1 112 15 16383

*IEEE 754-2008 standard, August 2008, available at https://ieeexplore.ieee.org/document/4610935.



Basics: Floating-Point Arithmetic
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defined by IEEE 754 standard

(−1)s ⋅ m ⋅ 2eRepresentation:

precision sign 
bit

m bits e bits e bias
single (32) 1 23 8 127
double (64) 1 52 11 1023
quad (128) 1 112 15 16383

What is the decimal number in single precision?
2min0 01111111 10000000000000000000000

sign exponent significand

= (−1)0 ⋅ (1 +
1
2

) ⋅ 2127−127

= 1.5

floating-point formats in biased representation



precision sign 
bit

m bits e bits e bias
single (32) 1 23 8 127
double (64) 1 52 11 1023
quad (128) 1 112 15 16383
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Limited precision  → need to round every operation

Arithmetic operations (+, -, *, /, √) are accurately rounded, i.e.  
‣ as if computed in real arithmetic and then rounded

Rounding modes: 
‣ round to nearest 
‣ round to 0 
‣ round to +∞ 
‣ round to -∞ 

Abstraction for round to nearest:
x ∘fp y = (x ∘ y) ⋅ (1 + δ) where |δ | ≤ ϵm

Basics: Floating-Point Arithmetic
(−1)s ⋅ m ⋅ 2e



Special Values
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Limited range → overflow, underflow

Special values: +∞, -∞, +0.0, -0.0, NaN (Not-a-Number)

1.0 / 0.0 → Infinity

1.0 / (-0.0) → -Infinity

sqrt(-42.0) → NaN

NaN * 0.0 → NaN

NaN == NaN → false

(−1)s ⋅ m ⋅ 2e
precision sign 

bit
m bits e bits e bias

single (32) 1 23 8 127
double (64) 1 52 11 1023
quad (128) 1 112 15 16383



More unintuitive behavior
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Floating-point arithmetic is commutative, but not associative and distributive

x + (y + z) != (x + y) + z

x * (y * z) != (x * y) * z

x * (y + z) != (x * y) + (x * z)

Further,
x / 10 != x * 0.1

x == y ⇏ 1/x == 1/y

x != x



Overview
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‣ Challenges 
‣ Basics of Floating-Point Arithmetic 
‣ Dataflow analysis  

• Interval Arithmetic (IA) 
• Floating-Point IA 
• Analysis of roundoff errors with IA 
• Demo: Daisy

27.06.



Intervals: Basic Terms and Concepts
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

x := {[l1, h1] ∣ l1 ≤ h1, l1 ∈ ℤ ∪ {−∞}, h1 ∈ ℤ ∪ {+∞}}
• x and y are intervals over ℤ:

y := {[l2, h2] ∣ l2 ≤ h2, l2 ∈ ℤ ∪ {−∞}, h2 ∈ ℤ ∪ {+∞}}

• with ordering: [l1, h1] ⊆ [l2, h2]     iff     l2 ≤ l1 and h1 ≤ h2

x ⊆ y

Interval Arithmetic: From Principles to Implementation, T. Hickey, Q. Ju, M. H. Van Emden, JACM 2001



Intervals: Basic Terms and Concepts
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

x := {[l1, h1] ∣ l1 ≤ h1, l1 ∈ ℤ ∪ {−∞}, h1 ∈ ℤ ∪ {+∞}}
• x and y are intervals over ℤ:

x = y l1 = l2, h1 = h2if

• Two intervals x and y are equal if they are the same:

• with ordering:

y := {[l2, h2] ∣ l2 ≤ h2, l2 ∈ ℤ ∪ {−∞}, h2 ∈ ℤ ∪ {+∞}}

[l1, h1] ⊆ [l2, h2]     iff     l2 ≤ l1 and h1 ≤ h2

x ≠ y



Intervals: Basic Terms and Concepts
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

x := {[l1, h1] ∣ l1 ≤ h1, l1 ∈ ℤ ∪ {−∞}, h1 ∈ ℤ ∪ {+∞}}
• x and y are intervals over ℤ:

x = y l1 = l2, h1 = h2if

• Two intervals x and y are equal if they are the same:

• with ordering:

y := {[l2, h2] ∣ l2 ≤ h2, l2 ∈ ℤ ∪ {−∞}, h2 ∈ ℤ ∪ {+∞}}

[l1, h1] ⊆ [l2, h2]     iff     l2 ≤ l1 and h1 ≤ h2

• Absolute values of intervals:
∣ x ∣ = max{ ∣ l1 ∣ , ∣ h1 ∣ }
∣ y ∣ = max{ ∣ l2 ∣ , ∣ h2 ∣ }

∣ x ∣ = 3, ∣ y ∣ = 5



Interval Arithmetic (IA)
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Addition: 

• Subtraction: 

• Multiplication: 
• Division: 

x + y := [l1 + l2, h1 + h2]

= [-4, 7]



Interval Arithmetic (IA)
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Addition: 

• Subtraction: 

• Multiplication: 

• Division: 

x + y := [l1 + l2, h1 + h2]

x − y := [l1 − h2, h1 − l2]

= [3, 8]



Interval Arithmetic (IA)
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# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Addition: 

• Subtraction: 

• Multiplication: 

• Division: 

x + y := [l1 + l2, h1 + h2]

x − y := [l1 − h2, h1 − l2]

x × y := [min((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2)),

max((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2))]

= [-15, 12]



Interval Arithmetic (IA)
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• Addition: 

• Subtraction: 

• Multiplication: 

• Division: 

x + y := [l1 + l2, h1 + h2]

x − y := [l1 − h2, h1 − l2]

# Each variable represents a closed interval
x = [1, 3], y = [-5, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Division: x /y :=

1. Does the denominator contain 0? 
2. In ℤ, the results are computed by checking all combinations 
3. Uses floor divisions for soundness!

undefined!
0 ∈ y

x × y := [min((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2)),

max((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2))]



Interval Arithmetic (IA)
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• Addition: 

• Subtraction: 

• Multiplication: 

• Division: 

x + y := [l1 + l2, h1 + h2]

x − y := [l1 − h2, h1 − l2]

# Each variable represents a closed interval
x = [1, 3], y = [1, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Division: x /y := [min(a /b), max(a /b)],

1. Does the denominator contain 0? 
2. In ℤ, the results are computed by checking all combinations 
3. Uses floor divisions for soundness!

a ∈ {l1, h1}, b ∈ {l2, h2} 0 ∉ [l2, h2]andwhere

x × y := [min((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2)),

max((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2))]



Interval Arithmetic (IA)
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• Addition: 

• Subtraction: 

• Multiplication: 

• Division: 

x + y := [l1 + l2, h1 + h2]

x − y := [l1 − h2, h1 − l2]

# Each variable represents a closed interval
x = [1, 3], y = [1, 4]
add = x + y
sub = x - y
mul = x * y
div = x / y 

• Division: x /y := [min(a /b), max(a /b)],
a ∈ {l1, h1}, b ∈ {l2, h2} 0 ∉ [l2, h2]andwhere

= [0, 3]

x × y := [min((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2)),

max((l1 × l2), (l1 × h2), (h1 × l2), (h1 × h2))]



How is IA useful for floats?
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Let's assume we want to develop an analysis which can prove that special 
values +∞, -∞, NaN do not appear in a program execution.

inputs: x, y

w = 1.0 / (x + y)

z = sqrt(w)

Note: we could do integer-valued interval analysis,  
but it would be very imprecise

inputs: x, y    

t = x + y      // show 0 ∉ δ[t]
w = 1.0 / t

z = sqrt(w)   // show δ[w] non-negative

// x,y ∈ [a, b]



Floating-Point IA
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Define the domain of intervals over 𝔽 as:

I := {[l, h] | l ≤ h, l ∈ 𝔽, h ∈ 𝔽}

with ordering: [l1, h1] ⊆ [l2, h2]     iff     l2 ≤ l1 and h1 ≤ h2

For soundness, arithmetic operations need to be rounded outwards:

• [l1, h1] ⊕ [l2, h2] ≔ [l1 +↓ l2, h1 +↑ h2] 

• [l1, h1] ⊖ [l2, h2] ≔ [l1 -↓ h2, h1 -↑ l2] 

• [l1, h1] ⊗ [l2, h2] ≔ [min{l112↓, l1h2↓, h112↓, h1h2↓}, max{l112↑, l1h2↑, h112↑, h1h2↑}] 

• [l1, h1] ⊘ [l2, h2] =  [min{l1↓ × (1/h2)↓, l1↓ × (1/12)↓, h1↓ × (1/h2)↓, h1↓ × (1/12)↓}, 

                                                     max{l1↑ × (1/h2)↑, l1↑ × (1/12)↑, h1↑ × (1/h2)↑, h1↑ × (1/12)↑}]

where  ↓ : rounded to -∞  and ↑ : rounded to +∞



Roundoff Errors
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inputs: x, y

w = 1.0 / (x + y)     // no div-by-zero

z = sqrt(w)           // no sqrt of negative number  

Before: Analysis for showing absence of “runtime errors”:

Next: Analysis for verifying the accuracy of a computation 
‣ assume no infinities, NaNs 
‣ compute worst-case roundoff errors: i.e. difference to real-valued execution

can be checked with interval analysis!

➡  needed e.g. to check validity of controller stability



Accuracy
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• Absolute Errors: max
x2I

|f(x)� f̃(x̃)|

• Relative errors: max
x2I

|f(x)� f̃(x̃)|
|f(x)|

real-valued programinput spec floating-point program

Problem: if 0 ∈ f(x), the expression is not well-defined 
‣ focus on absolute errors



Intervals for Individual Executions
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f(x) = x + 3.1*x*x

Idea:


Track individual executions with floating-point interval arithmetic 

x = 3.14       // [3.14↓, 3.14↑]


in the end:  
roundoff error ≤ width of interval

+ Often used in numerical analysis 
+ Easy to implement
- Only provides information about a single execution



Interval Analysis for Roundoffs
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Goal: compute worst-case roundoff error estimate for a range of executions

step 1. Compute real-valued range: 
step 2. Compute the errors:

Idea: track ranges of variables and errors separately
‣ we need the ranges, because roundoff errors depend on them

z = eval(x ⊚ y) //x ∈ [−10,10], y ∈ [−10,10]{arithmetic expression

propagatedError + newRoundoffError  



Error Propagation
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Error propagation depends on the arithmetic operation:

• Addition: x̃ + ỹ = (x + errx) + (y + erry) = x + y + errx + erry{propagated error{real value

• Subtraction: x̃ − ỹ = (x + errx) − (y + erry) = x − y + errx − erry{real value {propagated error

For arithmetic operations: eval(x ⊚ y) 

‣ real-valued range:   xrange ⊚ yrange 

‣ error: propagatedError + newRoundoffError  



Error Propagation
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Error propagation depends on the arithmetic operation:

• Multiplication:
x̃ × ỹ = (x + errx) × (y + erry) = x × y + x × erry + y × errx + errx × erry{real value propagated error

• Division: compute inverse and then multiplication

• Inverse and Square Root: compute linear approximation

For arithmetic operations: eval(x ⊚ y) 

‣ real-valued range:   xrange ⊚ yrange 

‣ error: propagatedError + newRoundoffError  



New Roundoff Error
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Recall floating-point abstraction (round to nearest):

x ∘fp y = (x ∘ y) ⋅ (1 + δ) where |δ | ≤ ϵm

x ∘fp y = x ∘ y + (x ∘ y) ⋅ δ{error{real value

• New worst-case roundoff error: max |x ∘ y | ⋅ ϵm

•            here includes propagated errorsx ∘ y
•         depends on the floating-point precision ϵm

For arithmetic operations: eval(x ⊚ y) 

‣ real-valued range:   xrange ⊚ yrange 

‣ error: propagatedError + newRoundoffError  



Quiz
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What is the range for z after the operation?

2min

a)

b)

c)

x ↦ ([1, 2], [-0.1, 0.1]), y ↦ ([3, 4], [-0.3, 0.3]) 

z = x + y

([4, 6], [-0.4, 0.4] + [3.6, 6.4]𝜖M)

([4, 6], [-0.4, 0.4] + [-0.4, 0.4]𝜖M)

([3.6, 6.4], [-0.4, 0.4])



Quiz
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What is the range for z after the operation?

2min

a)

b)

c)

x ↦ ([1, 2], [-0.1, 0.1]), y ↦ ([3, 4], [-0.3, 0.3]) 

z = x + y

([4, 6], [-0.4, 0.4] + [3.6, 6.4]𝜖M)

([4, 6], [-0.4, 0.4] + [-0.4, 0.4]𝜖M)

([3.6, 6.4], [-0.4, 0.4])



Demo
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~40min

Daisy - Framework for Analysis and Optimization of Numerical Programs, 
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18

Prerequisite: Docker

https://docs.docker.com/engine/install/
• Ubuntu/Debian/Fedora/CentOS:

https://docs.docker.com/desktop/setup/install/mac-install/
• MacOS:

https://docs.docker.com/desktop/setup/install/windows-install/
• Windows:



Demo
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- sudo docker pull dlohar/daisy 
- sudo docker run -it dlohar/daisy

~40min

Installation:

import daisy.lang._ 
import Real._ 
object Test { 
  def test(x: Real, y: Real): Real = { 
    require(1 <= x && x <= 3 && -5 <= y && y <= 4) 

    val add = x + y 
    add 
  } 
}

 float-analysis-class/Test.scala:

Daisy - Framework for Analysis and Optimization of Numerical Programs, 
E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, R. Bastian, TACAS’18



Demo
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~40min

Running Daisy:
- sbt script 
- ./daisy float-analysis-class/Test.scala  
   —-rangeMethod=interval —-errorMethod=interval 
   —-precision=Float32

Try it with other precision, input ranges,  
arithmetic operations, noInitialErrors etc!


