Sound Vixed Fixed-Point Quantization of Neural Networks

Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, Eva Darulova

FMSOFT 2023

UPPSALA UNIVERSITET

Neural networks are ubiquitous in safety-critical systems!

. . .

Neural Networks as Controllers

Neural Networks as Controllers

x1 = relu([W1] x [in] + [b1]) out = linear([W2] x [x1] + [b2])

feed-forward regression model

Neural networks are usually trained in high-precision!

Neural networks are usually trained in high-precision!

training

Model is usually in high-precision!

x1 = relu([W1] x [in] + [b1]) out = linear([W2] x [x1] + [b2])

Model is usually in high-precision!

Safety Verification of Neural Network Controllers

Safety Verification of Neural Network Controllers

real-valued arithmetic

Safety Verification of Neural Network Controllers

Do not directly consider the finite-precision deployment of the model

Controllers deployed in Embedded Systems

Controllers deployed in Embedded Systems

Neural Network Quantization

Our Goal: Quantize respecting the error bound!

mixed-precision fixed-point code

```
#include <math.h>
#include <ap_fixed.h>
#include <ap_fixed.h>
#include <hls_math.h>
#include <ap_fixed.h>
void nn!(ap_fixed<24,5> x_0, ap_fixed<24,4> x_1, ap_fixed<24,3> x_2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
    ap_fixed<24,1> weights1_0_0 = -0.036691424;
    ...
    ap_fixed<27,8> layer2_dot_1 = (_tmp4994 + _tmp4995);
    ap_fixed<27,8> layer2_bias_0 = (layer2_dot_0 + (ap_fixed<27,1>) (bias2_0));
    ap_fixed<27,8> layer2_bias_1 = (layer2_dot_1 + (ap_fixed<27,1>) (bias2_1));
    ap_fixed<27,8> layer2_0 = (layer2_bias_0);
    ap_fixed<27,8> layer2_1 = (layer2_bias_1);
    _result[0] = layer2_0;
    _result[1] = layer2_1;
}
```


mixed-precision fixed-point code

```
#include <math.h>
#include <ap_fixed.h>
#include <ap_fixed.h>
#include <hls_math.h>
#include <ap_fixed.h>

void nn!(ap_fixed<24,5> x_0, ap_fixed<24,4> x_1, ap_fixed<24,3> x_2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
    ap_fixed<24,1> weights1_0_0 = -0.036691424;
    ...

ap_fixed<27,8> layer2_dot_1 = (_tmp4994 + _tmp4995);
    ap_fixed<27,8> layer2_bias_0 = (layer2_dot_0 + (ap_fixed<27,1>) (bias2_0));
    ap_fixed<27,8> layer2_bias_1 = (layer2_dot_1 + (ap_fixed<27,1>) (bias2_1));
    ap_fixed<27,8> layer2_0 = (layer2_bias_0);
    ap_fixed<27,8> layer2_1 = (layer2_bias_1);
    _result[0] = layer2_0;
    _result[1] = layer2_1;
}
```


mixed-precision fixed-point code

```
#include <math.h>
#include <ap_fixed.h>
#include <ap_fixed.h>
#include <hls_math.h>
#include <ap_fixed.h>
void and (ap_fixed<24,5> x_0, ap_fixed<24,4> x_1, ap_fixed<24,3> x_2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
    ap_fixed<24,1> weights1_0_0 = -0.036691424;
    ...
    ap_fixed<27,8> layer2_dot_1 = (_tmp4994 + _tmp4995);
    ap_fixed<27,8> layer2_bias_0 = (layer2_dot_0 + (ap_fixed<27,1>) (bias2_0));
    ap_fixed<27,8> layer2_bias_1 = (layer2_dot_1 + (ap_fixed<27,1>) (bias2_1));
    ap_fixed<27,8> layer2_0 = (layer2_bias_0);
    ap_fixed<27,8> layer2_1 = (layer2_bias_1);
    _result[0] = layer2_0;
    _result[1] = layer2_1;
```

directly compiled **XILINX** latency = **27** cycles

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

latency = 178 cycles

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

latency = 178 cycles

over-approximates a lot!

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

2. Rigorous floating-point mixed-precision tuning, W. Chiang et al., POPL 2017

1. Daisy - Framework for Analysis and Optimization of Numerical Programs, E. Darulova et al., TACAS 2018

2. Rigorous floating-point mixed-precision tuning, W. Chiang et al., POPL 2017

State-of-the-Art in Neural Network Quantization

1. Compiling KB-Sized Machine Learning Models to Tiny IoT Devices, S. Gopinath et al., PLDI 2019

2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

State-of-the-Art in Neural Network Quantization

1. Compiling KB-Sized Machine Learning Models to Tiny IoT Devices, S. Gopinath et al., PLDI 2019

2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

does not work for controllers!

State-of-the-Art in Neural Network Quantization

1. Compiling KB-Sized Machine Learning Models to Tiny IoT Devices, S. Gopinath et al., PLDI 2019

2. Shiftry: RNN inference in 2KB of RAM, A. Kumar et al., OOPSLA 2020

does not work for controllers!

State-of-the-Art is not enough!

res +/- 1e-3

unsound quantizers for classifiers

sound tuner for numerical programs

State-of-the-Art is not enough!

res +/- 1e-3

We provide: sound quantizer for NN controllers guaranteeing error bounds

unsound quantizers for classifiers

sound tuner for numerical programs

minimize:
$$\gamma = \sum_{i=1}^{n} \gamma_i^{dot} + \gamma_i^{bias} + \gamma_i^{\alpha}$$

integer-valued cost

minimize:
$$\gamma = \sum_{i=1}^{n} \gamma_i^{dot} + \gamma_i^{bias} + \gamma_i^{\alpha}$$

integer-valued cost

minimize:
$$\gamma = \sum_{i=1}^{n} \gamma_i^{dot} + \gamma_i^{bias} + \gamma_i^{\alpha}$$

subject to:
 $\epsilon_n \leq \epsilon_{target}$

- integer-valued cost
- real-valued error constraint

Quantization Formulated as an Optimization Problem

subject to:

- integer-valued cost
- real-valued error constraint

mixed-integer problem

- minimize: $\gamma = \sum \gamma_i^{dot} + \gamma_i^{bias} + \gamma_i^{\alpha}$ i=1
 - $\epsilon_n \leq \epsilon_{target}$

fixed-point representation

fixed-point representation

subject to:

mixed-integer non-linear hard problem!

mixed-integer non-linear hard problem!

mixed-integer non-linear hard problem!

Our Idea: Reduce to Mixed Integer Linear Programming (MILP) Problem!

subject to:

fixed-point representation

over-approximate integer bits separately

fixed-point representation

• over-approximate integer bits separately

- over-approximate integer bits separately
- linearize bias cost and error constraint exactly

- over-approximate integer bits separately
- linearize bias cost and error constraint exactly
- abstract dot product

- over-approximate integer bits separately
- linearize bias cost and error constraint exactly
- abstract dot product

step 1: computing integer bits using interval arithmetic

Computed integer bits for all variables and constants without overflow

- linearize bias cost and error constraint exactly
- abstract dot product
- over-approximate integer bits separately

Linearization Step 2: Exact Linearization of Cost

minimize: $\gamma =$

subject to:

 $I_i^{op} \geq$

$$\gamma_i^{bias} = \max(\pi_i^{dot}, \pi_i^{bias})$$

$$= \sum_{i=1}^{n} \gamma_{i}^{dot} + \overline{\gamma_{i}^{bias}} + \gamma_{i}^{\alpha}$$
$$\epsilon_{n} \leq \epsilon_{target}$$
$$\geq \text{intBits} \left(R_{i}^{op} + \epsilon_{i} \right)$$

non-linear function

Linearization Step 2: Exact Linearization of Cost

minimize: $\gamma =$

subject to:

 $I_i^{op} \ge$

 $\gamma_i^{bias} = n$

c1:

c2:

$$= \sum_{i=1}^{n} \gamma_{i}^{dot} + \gamma_{i}^{bias} + \gamma_{i}^{\alpha}$$
$$\epsilon_{n} \leq \epsilon_{target}$$
$$\geq \text{intBits} \left(R_{i}^{op} + \epsilon_{i} \right)$$

$$\begin{aligned} \max_{i} (\pi_{i}^{dot}, \pi_{i}^{bias}) \\ \gamma_{i}^{bias} \geq \pi_{i}^{dot} \\ \gamma_{i}^{bias} \geq \pi_{i}^{bias} \end{aligned}$$

subject to:

• abstract dot product

- linearize bias cost and error constraint exactly

Linearization Step 3: Abstract Dot Product

minimize: $\gamma =$ subject to: I_i^{op}

assume a precision for weights, correct it later

$$= \sum_{i=1}^{n} \gamma_i^{dot} + \gamma_i^{bias} + \gamma_i^{\alpha}$$

$$\epsilon_n \leq \epsilon_{target}$$

 $\geq \text{intBits}\left(R_i^{op} + \epsilon_i\right)$

Optimizing Fractional Bits for Dot and Bias Products

Linearized Problem

Optimizing Fractional Bits for Dot and Bias Products

Linearized Problem

Assign Correctly Rounded Precision to Weights

- computed integer bits for all variables and constants \bullet
- optimized fractional bits for dot and bias results assuming precision of weights

Assign Correctly Rounded Precision to Weights

- computed integer bits for all variables and constants
- optimized fractional bits for dot and bias results assuming precision of weights
- assigning correctly rounded precision for all variables and constants \bullet

Assign Correctly Rounded Precision to Weights

- computed integer bits for all variables and constants
- optimized fractional bits for dot and bias results assuming precision of weights
- assigning correctly rounded precision for all variables and constants \bullet using fixed-point sum of products by constants*

* A Correctly-Rounded Fixed-Point-Arithmetic DotProduct Algorithm, Sylvie Boldo, Diane Gallois-Wong, and Thibault Hilaire, ARITH 2020

Aster: Sound Quantizer for NN Controllers

```
def UnicycleController(in: Vector): Vector = {
    require(-0.6<=in1<=9.55 && -4.5<=in2<=0.2
    && -0.06<=in3<=2.11 && -0.3<=in4<=1.51)
    weights1 = Matrix[...]
    weights2 = Matrix[...]
    bias1 = Vector(...)
    bias2 = Vector(...)
    x1 = relu(weights1 * in + bias1)
    out = linear(weights2 * x1 + bias2)
    return out
} ensuring (res +/- 1e-3)</pre>
```

high-level model

Aster: Sound Quantizer for NN Controllers

```
def UnicycleController(in: Vector): Vector = {
    require(-0.6<=in1<=9.55 && -4.5<=in2<=0.2
    && -0.06<=in3<=2.11 && -0.3<=in4<=1.51)
    weights1 = Matrix[...]
    weights2 = Matrix[...]
    bias1 = Vector(...)
    bias2 = Vector(...)
    x1 = relu(weights1 * in + bias1)
    out = linear(weights2 * x1 + bias2)
    return out
} ensuring (res +/- 1e-3)</pre>
```

high-level model

mixed-precision fixed-point code

```
#include <math.h>
#include <ap_fixed.h>
#include <ap_fixed.h>
#include <hls_math.h>
#include <ap_fixed.h>
void nnl(ap_fixed<24,5> x_0, ap_fixed<24,4> x_1, ap_fixed<24,3> x_2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
    ap_fixed<24,1> weights1_0_0 = -0.036691424;
    ...
    ap_fixed<27,8> layer2_dot_1 = (_tmp4994 + _tmp4995);
    ap_fixed<27,8> layer2_bias_0 = (layer2_dot_0 + (ap_fixed<27,1>) (bias2_0));
    ap_fixed<27,8> layer2_bias_1 = (layer2_dot_1 + (ap_fixed<27,1>) (bias2_1));
    ap_fixed<27,8> layer2_0 = (layer2_bias_0);
    ap_fixed<27,8> layer2_1 = (layer2_bias_1);
    _result[0] = layer2_0;
    _result[1] = layer2_1;
}
```


Aster: Sound Quantizer for NN Controllers

```
def UnicycleController(in: Vector): Vector = {
    require(-0.6<=in1<=9.55 && -4.5<=in2<=0.2
    && -0.06<=in3<=2.11 && -0.3<=in4<=1.51)
    weights1 = Matrix[...]
    weights2 = Matrix[...]
    bias1 = Vector(...)
    bias2 = Vector(...)
    x1 = relu(weights1 * in + bias1)
    out = linear(weights2 * x1 + bias2)
    return out
} ensuring (res +/- 1e-3)</pre>
```

high-level model

mixed-precision fixed-point code

```
#include <math.h>
#include <ap_fixed.h>
#include <ap_fixed.h>
#include <hls_math.h>
#include <ap_fixed.h>
void nnl(ap_fixed<24,5> x_0, ap_fixed<24,4> x_1, ap_fixed<24,3> x_2,
ap_fixed<24,2> x_3, ap_fixed<27,8> _result[2]) {
    ap_fixed<24,1> weights1_0_0 = -0.036691424;
    ...
    ap_fixed<27,8> layer2_dot_1 = (_tmp4994 + _tmp4995);
    ap_fixed<27,8> layer2_bias_0 = (layer2_dot_0 + (ap_fixed<27,1>) (bias2_0));
    ap_fixed<27,8> layer2_bias_1 = (layer2_dot_1 + (ap_fixed<27,1>) (bias2_1));
    ap_fixed<27,8> layer2_0 = (layer2_bias_0);
    ap_fixed<27,8> layer2_1 = (layer2_bias_1);
    _result[0] = layer2_0;
    _result[1] = layer2_1;
}
```

directly compiled

benchmarks	#params	Daisy	Aster
InvPendulum	60		
MountainCar	336		
MPC	720		
DoublePendulum	825		
ACC3	980		
Unicycle	3,500		
Airplane	13,540		
ControllerTora	20,800		
AC8	44,545		

Latencies of implementations considering target error 1e-3

benchmarks	#params	Daisy	Aster
InvPendulum	60	12	
MountainCar	336	27	
MPC	720	inf	
DoublePendulum	825	36	
ACC3	980	49	
Unicycle	3,500	178	
Airplane	13,540	ТО	
ControllerTora	20,800	ТО	
AC8	44,545	ТО	

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

benchmarks	#params	Daisy	Aster
InvPendulum	60	12	12
MountainCar	336	27	25
MPC	720	inf	35
DoublePendulum	825	36	27
ACC3	980	49	44
Unicycle	3,500	178	27
Airplane	13,540	ТО	
ControllerTora	20,800	ТО	
AC8	44,545	ТО	

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

benchmarks	#params	Daisy	Aster
InvPendulum	60	12	12
MountainCar	336	27	25
MPC	720	inf	35
DoublePendulum	825	36	27
ACC3	980	49	44
Unicycle	3,500	178	27
Airplane	13,540	TO	unrolled
ControllerTora	20,800	ТО	programs are
AC8	44,545	ТО	too large!

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible

benchmarks	#params	Daisy	Aster
InvPendulum	60	12	12
MountainCar	336	27	25
MPC	720	inf	35
DoublePendulum	825	36	27
ACC3	980	49	44
Unicycle	3,500	178	27
Airplane	13,540	TO	9,001*
ControllerTora	20,800	ΤΟ	13,158*
AC8	44,545	TO	*

Latencies of implementations considering target error 1e-3, TO: timed out after 5 hours, inf: tool returns infeasible *: compiled with explicit loops (i.e. not unrolled code), 🐼: Xilinx failed to compile the implementation

Aster vs State-of-the-Art in terms of Optimization Time

henc	hmarl	KS
	innan	

benchmarks	Daisy	Aster
InvPendulum	4.19s	
MountainCar	43.68s	
MPC	inf	
DoublePendulum	4m 6.64s	
ACC3	4m 52.05s	
Unicycle	2h 46m 20.65s	
Airplane	TO	
ControllerTora	TO	
AC8	ΤΟ	

Optimization time averaged over 3 runs considering 1e-3 target error, TO: timed out after 5 hours, inf: tool returns infeasible

Aster vs State-of-the-Art in terms of Optimization Time

henc	hmarks
	inians

benchmarks	Daisy	Aster
InvPendulum	4.19s	1.66s
MountainCar	43.68s	2.22s
MPC	inf	3.50s
DoublePendulum	4m 6.64s	3.80s
ACC3	4m 52.05s	7.28s
Unicycle	2h 46m 20.65s	49.92s
Airplane	ΤΟ	17m 40.92s
ControllerTora	ТО	47m 55.95s
AC8	ТО	3h 49m 31.43s

Optimization time averaged over 3 runs considering 1e-3 target error, TO: timed out after 5 hours, inf: tool returns infeasible

What else is there in the paper?

- The details of the MILP formulation
- Further linearization of error constraints
- Implementation details of the tool Aster
- Extensive experiments on
 - parameter evaluation of Aster
 - several benchmarks with different target errors
 - comparison of cost functions

Sound Mixed Fixed-Point Quantization of Neural Networks, Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, Eva Darulova, ESWEEK-TECS special issue, 2023

Summary

- Optimization based mixed precision fixed-point quantization for regression models Quantized code guarantees target roundoff error and runs on custom hardware • A tool Aster that is sound, automated, scalable for large networks with many parameters

